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QUANTITATIVE TECHNIQUE-II 

 A stochastic process is a indexed collection of random variables {X
t
} = 

{ X
0
, X

1
, X

2
, … } for describing the behavior of a system operating 

over some period of time. 
 For example : 

 X
0
 = 3, X

1
 = 2, X

2
 = 1, X

3
 = 0, X

4
 = 3, X

5
 = 1 

 An inventory example: 
 A camera store stocks a particular model camera.  
 D

t
 represents the demand for this camera during week t.  

 D
t
 has a Poisson distribution with a mean of 1. 

 X
t
 represents the number of cameras on hand at the end of week t. ( 

X
0
 = 3 ) 

 If there are no cameras in stock on Saturday night, the store orders 
three cameras. 

 { X
t
 } is a stochastic process. 

 X
t+1

 = max{ 3 – D
t+1

, 0 }      if X
t
 = 0 

              max{ X
t
 - D

t+1
, 0 }      if X

t
 ≥ 0 

 A stochastic process {X
t
} is a Markov chain if it has Markovian 

property. 
 Markovian property: 

 P{ X
t+1

 = j | X
0
 = k

0
, X

1
 = k

1
, ..., X

t-1
 = k

t-1
, X

t
 = i }  

    = P{ X
t+1

 = j | X
t
 = i } 

 P{ X
t+1

 = j | X
t
 = i } is called the transition probability. 

 Stationary transition probability: 
 If ,for each i and j, P{ X

t+1
 = j | X

t
 = i } = P{ X

1
 = j | X

0
 = i }, 

for all t, then the transition probability are said to be stationary. 
 Formulating the inventory example: 

 Transition matrix: 
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 X
t+1

 = max{ 3 – D
t+1

, 0 }      if X
t
 = 0 

              max{ X
t
 - D

t+1
, 0 }      if X

t
 ≥ 1 

 p
03

 = P{ D
t+1

 = 0 } = 0.368 
 p

02
 = P{ D

t+1
 = 1 } = 0.368 

 p
01

 = P{ D
t+1

 = 2 } = 0.184 
 p

00
 = P{ D

t+1
 ≥ 3 } = 0.080 

 

 The state transition diagram: 

 

 n-step transition probability : 
 p

ij

(n)
 = P{ X

t+n
 = j | X

t
 = i } 

 n-step transition matrix : 
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 Chapman-Kolmogorove Equation : 
 

 
  
 The special cases of m = 1 leads to : 

 

 
 

 Thus the n-step transition probability can be obtained from one-step 
transition probability recursively.  

 Conclusion :  
 P

(n)
 = PP

(n-1)
 = PPP

(n-2)
 = ... = P

n
  

 n-step transition matrix for the inventory example :
 
 

( ) ( ) ( )

0

M
n m n m

ij ik kj
k

p p p −

=

= ∑

( ) (1) ( 1)

0

M
n n

ij ik kj
k

p p p −

=

= ∑
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 What is the probability that the camera store will have three cameras 
on hand 4 weeks after the inventory system began ? 

 P{ X
n
 = j } = P{ X

0
 = 0 }p

0j

(n)
 + P{ X

0
 = 1 } p

1j

(n)
 + ...  

                     + P{ X
0
 = M } p

Mj

(n)
 

 P{ X
4
 = 3 } = P{ X

0
 = 0 }p

03

(4)
 + P{ X

0
 = 1 } p

13

(4)
  

                     + P{ X
0
 = 2 } p

23

(4)
 + P{ X

0
 = 3 } p

33

(4)
 

                     = (1) p
33

(4)
 = 0.164 

 Long-Run Properties of Markov Chain 
 Steady-State Probability 
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 The steady-state probability implies that there is a limiting probability 
that the system will be in each state j after a large number of 
transitions, and that this probability is independent of the initial state. 

 Not all Markov chains have this property. 

 

 Steady-State Equations : 

0

0
1

M

j i ij
i

M

j
j

pπ π

π

=

=

=

=

∑

∑  

  which consists of M+2 equations in M+1 unknowns. 
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 Classification of States of a 
Markov Chain 

 Accessible : 

 State j is accessible from state i if Pij
(n) > 0 for 

some n ≥ 0. 

 Communicate : 
 If state j is accessible from state i and state i is 

accessible from state j, then states i and j are 
said to communicate. 

 If state i communicates with state j and state j 
communicates with state k, then state j 
communicates with state k. 

 Class : 
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 The state may be partitioned into one or more separate 
classes such that those states that communicate with 
each other are in the same class. 
 Irreducible : 

 A Markov chain is said to be irreducible if there is 
only one class, i.e., all the states communicate. 

 A gambling example : 

 Suppose that a player has $1 and with each play 
of the game wins $1 with probability p > 0 or 
loses $1 with probability 1-p. The game ends 
when the player either accumulates $3 or goes 
broke. 

  

  
 Transient state : 

 A state is said to be a transient state if, upon 
entering this state, the process may never return 
to this state. Therefore, state I is transient if and 
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only if there exists a state j (j≠i) that is 
accessible from state i but not vice versa. 

 Recurrent state : 

 A state is said to be a recurrent state if, upon 
entering this state, the process definitely will 
return to this state again. Therefore, a state is 
recurrent if and only if it is not transient. 

 Absorbing state : 

 A state is said to be an absorbing state if, upon entering 
this state, the process never will leave this state again. 
Therefore, state i is an absorbing state if and only if Pii = 
1. 

  
 Period : 

 The period of state i is defined to be the integer t 
(t>1) such that Pii

(n)
 = 0 for all value of n other 

than t, 2t, 3t, ... . 

 P11
(k+1)

 = 0, k = 0, 1 ,2 , ... 

 Aperiodic : 
 If there are two consecutive numbers s and s+1 

such that the process can be in the state i at 
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times s and s+1, the state is said to be have 
period 1 and is called an aperiodic state. 

 Ergodic : 
 Recurrent states that are aperiodic are called 

ergodic states. 

 A Markov chain is said to be ergodic if all its 
states are ergodic. 

 For any irreducible ergodic Markov chain, steady-state 

probability,          ,exists. 
 An inventory example : 

 The process is irreducible and ergodic and therefore, 
has steady-state probability. 

  

  
 First Passage time : 

( )lim n
ijn

p
→∞
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 The first passage time from state i to state j is 
the number of transitions made by the process in 
going from state i to state j for the first time. 

 Recurrence time : 

 When j = i, the first passage time is just the 
number of transitions until the process returns to 
the initial state i and called the recurrence time 
for state i. 

 Example : 

 X0 = 3, X1 = 2, X2 = 1, X3 = 0, X4 = 3, X5 = 1 

 The first passage time from state 3 to state 1 is 2 
weeks. 

 The recurrence time for state 3 is 4 weeks. 
       denotes the probability that the first passage 

time from state i to state j is n. 

 Recursive relationship : 
 

 

 The inventory example : 

 f30
(1)

 = p30 = 0.080 

 f30
(2)

 = p31 f10
(1)

 + p32 f20
(1)

 + p33 f30
(1)

  

           = 0.184(0.632) + 0.368(0.264) + 
0.368(0.080) = 0.243 

 ... ... 

 Sum : 

 

 Expected first passage time : 

( )n
ijf

( ) ( 1)n n
ij ik kj

k j
f p f −

≠

= ∑ (1) (1)
ij ij ijf p p= = (2) (1)

ij ik kj
k j

f p f
≠

= ∑

( )

1

n
ij

n
f

∞

=
∑
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 The inventory example : 

 µ30 = 1 + p31µ10 + p32µ20 + p33µ30 

 µ20 = 1 + p21µ10 + p22µ20 + p23µ30  

 µ10 = 1 + p11µ10 + p12µ20 + p13µ30  

µ10 = 1.58 weeks, µ20 = 2.51 weeks, µ30 = 3.50 weeks 

 Absorbing states : 

 A state k is called an absorbing state if pkk = 1, 
so that once the chain visits k it remains there 
forever. 

 An gambling example : 

 Suppose that two players (A and B), each having 
$2, agree to keep playing the game and betting 
$1 at a time until one player is broke. The 
probability of A winning a single bet is 1/3. 
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 Probability of absorption : 

 If k is an absorbing state, and the process 
starts in state i, the probability of ever 
going to state k is called the probability of 
absorption into state k, given the system 
started in state i. 

 The gambling example : 

f20 = 4/5, f24 = 1/5 
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