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Stochastic process

X(t) is the state of the process (measurable characteristic 
of interest) at time t

• the state space of the a stochastic process is defined as 
the set of all possible values that the random variables 
X(t) can assume

• when the set T is countable, the stochastic process is a 
discrete time process; denote by {Xn, n=0, 1, 2, …}

• when T is an interval of the real line, the stochastic 
process is a continuous time process; denote by {X(t), 
t≥0}



Stochastic process

Hence,
• a stochastic process is a family of random variables that 

describes the evolution through time of some (physical) 
process.

• usually, the random variables X(t) are dependent and  
hence the analysis of stochastic processes is very 
difficult.

• Discrete Time Markov Chains (DTMC) is a special type
of stochastic process that has a very simple dependence 

among X(t) and renders nice results in the analysis of 
{X(t), t∈T} under very mild assumptions.



Example of stochastic processes

Refer to X(t) as the state of the process at time t
 A stochastic process {X(t), t∈T} is a time indexed 

collection of random variables

 X(t) might equal the total number of customers that have 
entered a supermarket by time t

 X(t) might equal the number of customers in the 
supermarket at time t

 X(t) might equal the stock price of a company at time t



Counting process

Definition:
 A stochastic process {N(t), t≥0} is a counting process if 

N(t) represents the total number of “events” that have 
occurred up to time t



Counting process 

 Examples:
 If N(t) equal the number of persons who have entered a 

particular store at or prior to time t, then {N(t), t≥0} is a counting 
process in which an event corresponds to a person entering the 
store

• If N(t) equal the number of persons in the store at time t, then {N(t), 
t≥0} would not be a counting process. Why?

 If N(t) equals the total number of people born by time t, then 
{N(t), t≥0} is a counting process in which an event corresponds 
to a child is born

 If N(t) equals the number of goals that Ronaldo has scored by 
time t, then {N(t), t≥0} is a counting process in which an event 
occurs whenever he scores a goal



Counting process

 A counting process N(t) must satisfy
 N(t)≥0
 N(t) is integer valued
 If s ≤t, then N(s) ≤ N(t)
 For s<t, N(t)-N(s) equals the number of events that have 

occurred in the interval (s,t), or the increments of the counting 
process in (s,t)

 A counting process has
 Independent increments if the number of events which occur in 

disjoint time intervals are independent
 Stationary increments if the distribution of the number of 

events which occur in any interval of time depends only on the 
length of the time interval



Independent increment

This property says that numbers of events in 
disjoint intervals are independent random 
variables.

Suppose that t1< t2≤ t3< t4. Then N(t2)-N(t1), the 
number of events occurring in (t1,t2], is 
independent of N(t4)-N(t3), the number of events 
occurring in (t3, t4].



Example 

Dependent increments:
 Suppose N(t) is the number of babies born by year t.

 If N(t) is very large, then it is probable that there are 
many people alive at time t; this would then lead us to 
believe that the number of new births between time t and 
t+s would also tend to be large.

 Hence {N(t), t≥0} does not have independent increments.



Stationary increment

This property states that the distribution of the 
number of events which occur in any interval of 
time depends only on the length of the time 
interval

Suppose t1<t2, and s>0. Then
 N(t2+s)-N(t1+s), number of events in the interval (t1+s, 

t2+s), has the same distribution as
 N(t2)-N(t1), the number of events in interval (t1, t2).



Example 

Non-stationary increments:
The number of consumers who have entered the 

university canteen obviously does not have 
stationary increments. The arrival rates are 
higher during the lunch time



Poisson process (definition 1)

 The counting process {N(t), t≥0} is a Poisson Process with rate 
λ, λ>0, if
1. N(0) = 0
2. The process has independent increments
3. The number of events in any interval of length t is Poisson 
distributed with mean λt. That is, ∀s, t≥0,
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• From condition 3, the Poisson process has stationary 
increments and E[N(t)]=λt.

• From definition 1, a Poisson process with rate λ means 
that at any t>0, the number of events follows a Poisson 
distribution with mean  λt.



Example 

The arrival of customers at a café is a Poisson 
process with rate 4 per minute. Find the 
probability that there is no less than 5 arrivals
a) between time (0,2] (the first two minutes)
b) between time (4,8].



Identifying a Poisson process

To determine if an arbitrary counting process is 
a Poisson process, we need to show that 
conditions 1, 2, 3 are satisfied.
 Condition 1: states that the counting of events begins at 

time 0
 Condition 2: can usually be directly verified from our 

knowledge of the process
 Condition 3: hard to determine



Inter-arrival time distribution 

 For a Poisson process, denote T1 as the time of the first event, and 
Tn as the time between the (n-1)st and nth event, for n>1.

 The sequence {Tn, n=1, 2, …} is called the sequence of interarrival 
times.

 What is the distribution of Tn?



Inter-arrival time distribution

 Note that the event {T1>t} takes place if and only if no events of the 
Poisson  process occurs in the time interval [0,t], {T1>t} ↔ {N(t)=0}

 Thus P(T1>t) = P(N(t)=0)=e-λt

 Hence T1 has exponential distribution with mean 1/λ



Inter-arrival time distribution

 To obtain distribution of T2, condition on T1

P{T2>t | T1=s} = P{0 events in (s,s+t] | T1=s}
= P{0 events in (s, s+t]} (indept increments)
= e-λt (stationary increments)

 Repeating the same argument yields the following Proposition:
Tn, n=1, 2, … are independent identically distributed exponential 
random variables having mean 1/λ



Inter-arrival times 

Remark 1:
 This proposition is actually quite intuitive.
 The assumption of stationary and independent 

increments is basically equivalent to saying that at any 
point in time, the process probabilistically restarts itself.
 That is, the process at any point on is independent of all that has 

previously occurred (by independent increments), and also has 
the same distribution as the original process (by stationary 
increments).

 In other words, the process has no memory, and hence 
the exponential interarrival times are expected.



Inter-arrival times

Remark 2:
 Another way to obtain the distribution of T2 and so on, is 

to make use of the independent and stationary 
increments of the Poisson process. As such, the process 
probabilistically restarts itself at any point in time, so 
looking at the Time Frame view, the time origin can be 
‘pushed’ forward, and T2, T3, … can be viewed similarly 
like T1.



Inter-arrival times

Remark 3:
 The proposition gives us another way of defining a 

Poisson process.

 Suppose we have a sequence {Tn, n≥1} of independent 
identically distributed exponential random variables, 
each having mean 1/λ.

 Then by defining a counting process by saying that the 
nth event of this process occurs at time Sn = 
T1+T2+T3+…+Tn, the resultant counting process {N(t), 
t≥0} will be Poisson with rate λ.



Waiting time distribution 

 Another quantity of interest is Sn, the arrival time of the 
nth event (also called the waiting time until the nth event)



Example 

Suppose that people immigrate into a territory at 
a Poisson rate λ=1 per day.
a) What is the expected time until the tenth 
immigrant arrives?
b) What is the probability that the elapsed time 
between the tenth and the eleventh arrival 
exceeds two days?



Solution 

Since the arrival time of the nth event is Gamma 
distributed with parameters n, λ,
a) The expected time until 10th arrival is, E[S10] 
= 10/λ = 10 days
b) From before, we know that T11 is exponential 
and independent of T10, so P{T11>2} = e-2λ = e-2≈ 
.133



Further properties of Poisson process

Property 1a:
 Consider a Poisson process {N(t), t≥0} having rate λ.
 Each time an event occurs, it is classified as either a Type I or Type 

II event with probability p and 1-p respectively, independently of all 
other events.

 Let N1(t) and N2(t) denote respectively the number of Type I and 
Type II events occurring in [0,t].

 Then {N1(t), t≥0} and {N2(t), t≥0} are Poisson processes having 
respective rates λp and λ(1-p).

 The two processes are also independent.



Example 

Customers arrive at a Starbucks at a Poisson 
rate of λ=10 per hour.

Suppose that each customer is a man with 
probability ½, and a woman with probability ½.

Suppose you observe 100 men arrive in the first 
5 hours, how many women would we expect to 
have arrived in that 5 hours?



Is it right??

Because the number of male arrivals is 100, and 
because each arrival is male with probability ½, 
then the expected number of total arrivals 
should be 200
 hence, the expected number of female arrivals in first 5 

hours is 100.
 Is this reasoning correct?



Absolutely not!!

We have just shown by the previous property that the 
two Poisson processes {Nmale(t), t≥0} & {Nfemale(t), 
t≥0} are independent!

 So, the expected number of female arrivals in the first 
five hours is independent of the number of male arrivals 
in that period

 E[Nfemale(5)] = λt(1-p) = (10)(5)(1/2) = 25



Further properties of Poisson process

Property 1b:
 Let {N(t), t≥0} be a Poisson process with rate λ.

 Suppose that each event is type i with probability pi, 
i=1 to M, and 

 Then the type i events {Ni(t), t≥0} form a Poisson 
process with rate piλ; Moreover, {Ni(t), t≥0} and {Nj(t), 
t≥0} are independent of each other.
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Further properties of Poisson process

Property 2:
Let {N1(t), t≥0} and {N2(t), t≥0} be independent 

Poisson processes with rate λ1 and λ2
respectively.

Define N(t) = N1(t)+N2(t) for all t.
Then {N(t), t≥0} is a Poisson process with rate 

λ=λ1+λ2.



Summary 
 Definition of Poisson Process

 Definitions 1 & 2 (equivalent)
 Counting process: Independent increments, stationary increments, 

Poisson distributed
 Characteristics

 Interarrival times
• Exponential

 Waiting times
• Sum of Exponential  Gamma

 Keys to obtaining these results and solving problems are
(i) observing time frame & counting frame views
(ii) identifying equivalent events
(iii) stationary & independent increments
(iv) properties of distributions



Summary 

 Properties
 If a PP {N(t), t≥0} has rate λ,

• If each event is type I or type II with probability p & (1-p), then 
{N1(t), t≥0} and {N2(t), t≥0} are independent PP having 
respective rates λp and λ(1-p).

• If each event is type i with probability pi, i=1 to M, and            
then the type i events {Ni(t), t≥0} form independent PPs with 
rate piλ

 If {N1(t), t≥0} and {N2(t), t≥0} are independent PPs with rate 
λ1 and λ2, and N(t) = N1(t)+N2(t) for all t, then {N(t), t≥0} is a 
PP with rate λ=λ1+λ2.
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