
 
BIJU PATNAIK UNIVERSITY OF TECHNOLOGY, 

ODISHA 

 
Lecture Notes  

On 
 
 
 
 
 

Prepared by, 

Dr. Subhendu Kumar Rath,  

BPUT, Odisha. 

THEORY OF COMPUTATION 
MODULE -1 

UNIT - 2 
 



 
 Non-Deterministic Finite 

Automata UNIT 2   NON-DETERMINISTIC FINITE      
AUTOMATA 

Structure                                                                              Page Nos. 

2.0  Introduction 25 
2.1     Objectives 25 

 

2.2  Non-Deterministic Finite Automata NFA 26 
2.3 Equivalence of NFA and DFA 29 
2.4 Equivalence of -NFA’s and NFA’s 34 
2.5 Pumping Lemma 34 
2.6 Closure Properties (Regular Languages and Finite Automata) 37 
2.7 Equivalence of Regular Expression and FA 42 
2.8 Summary 48 
2.9 Solutions/Answers  48 
  

2.0  INTRODUCTION 

In our daily activities, we all encounter the use of various sequential circuits.  The 
elevator control which remembers to let us out before it picks up people going in the 
opposite direction, the traffic-light systems on our roads, trains and subways, all these 
are examples of sequential circuits in action.  Such systems can be mathematically 
represented by Finite state machines, also called finite automata or other powerful 
machine like turning machines.  In the previous unit, we introduced the concept of 
Deterministic Finite Automata (DFA), in which on an input in a given state of the 
DFA, there is a unique next state of DFA.  However, if we relax the condition of 
uniqueness of the next state in a finite automata, then we get Non-Deterministic Finite 
Automata (NFA).    
 
A natural question which now arises is whether a non-deterministic automata can 
recognize sets of strings which cannot be recognized by a deterministic finite 
automata.  At first, you may suspect that the added flexibility of non-deterministic 
finite automata increases their computational capabilities.  However, as we shall now 
show, there exists an effective procedure for converting a non-deterministic FA  into 
an equivalent deterministic one.  This leads us to the conclusion that non-deterministic  
FA’s and DFA’s have identical computational capabilities.  
 

2.1  OBJECTIVES 

After studying this unit, you should be able to  

 define a non-deterministic finite automata; 
 show the equivalence of NFA and DFA; 
 compute any string or language in any NFA;  
 state and prove pumping lemma;  
 apply pumping lemma for a language which is not regular; 
 apply closure properties of regular language and finite automata; and 
 find an equivalent regular expression from a transition system and vice-versa.  

 
In unit 1 we discussed about finite automata.  You may wonder that in finite automata 
for each input symbol there exists a unique state for processing of it.  Do you think 
that there may be more than one possible state, or there may not be any state for 
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processing of any letter.  If for processing of any letter there is more than one state or 
none state, then, the auotmata is known as non-deterministic finite automata (NFA). 
 
 

2.2   NON-DETERMINSTIC FINITE AUTOMATA 

You have already studied finite automata (though ‘automata’ is a plural form of the 
noun ‘automaton’, the word ‘automata’ is also used in singular sense). Now consider 
an automata that accepts all and only strings ending in 01, represented 
diagrammatically, as follows:   
 
 
 
 
 

 
Fig. 1: Transition Diagram 

 
In the case of the finite automata shown in figure 1, the following points may be 
noted:  

(i) On input 0 in state q0, the next state may be either of the two states viz., q0 or q1. 
(ii) There is no next state on input 0 in the state q1. 
(iii) There is no next state on input 0 and 1 in the state q2. 
 
In this transition system, what happens when this automata processes the input 
.00101? 
 
 
 
 
 
 
 
 
 
  

Fig. 2: Processing of string 00101 
 
Here from the initial state q0, for the processing of alphabet 0, there are two states at 
once or viewed another way, it can be ‘guessed” which state to go to next.  Such a 
finite automata allows to have a choice of 0 or more next states for each state input 
pair and is called a non-deterministic finite automata.  An NFA can be in several 
states at once.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3: Transition diagram 
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Before going to the formal definition of NFA, let us discuss one more case of non-
determinism of finite automata.  Suppose Q = {q0, q1, q2},  = {0, 1}, q0 is an initial 
state and q2 is final state.  Again, suppose the processing of any input symbol does not 
result in the transition to a unique state, but results a chain of states. Let us consider a 
machine given in figure 3. 
 
For the sake of convenience, let us check the processing of any input symbol.   From 
the state q0, after processing 0, resulting states are q0, q1, q2 and for input symbol 1, 
there are three possible states q0, q1 and q2 not a unique state.  It clarifies that a non-
deterministic automata can have more than one possible state or none state after 
processing any input symbol from .   
 
Let us check how the string 01 is processed by the above automata.  Here we have 
three paths to reach to the final state:  
 
                             0                1 
(i) q0                          q0                          q2 
 
                             0                1 
(ii) q0                          q1                          q2 
 
                             0                1 
(iii) q0                          q2                          q2 
 
A generalisation which is obtained here by allowing of several states as a result of the 
processing of an input symbol is called non-determinism.  If from any state, we can 
reach to several states or none state, then the finite automata becomes non-
deterministic in nature.  
 
Formally, a non-deterministic finite automata is a quintuple  

 A = (Q, , , q0, F) 
Where 
 
 * Q is a finite set of states  
 *  is a finite alphabet for inputs 
 *  is a transition function from Q   to the power set of Q i.e. to 2Q 
 * q0  Q is the start/initial state 
 * F Q is a set of final/accepting states.   
 
The NFA, for the example just considered, can be formally represented as:  
 
 ({q0, q1, q2}, {0,1}, , q0, {q2}) 
 
where  the transition function, is given by the table 1:   
 
                            Table1 
States 0 1 
→q0 

 
    q1 
 
 

{q0,q1} 
 
Ø 
 
 
Ø 

{q0} 
 
{q2} 
 
 
Ø 
 

q2 

 
Now, let us prove that the NFA 
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Fig. 4: NFA accepting x01 

 
accepts the language {x01 : x *} of all the strings that terminate with the sub-string 
01. A mutual induction on the three statements below proves that the NFA accepts the 
given language.  
1. w *   q0  (q0,w) 
2. q1  (q0, w)  w = x0 
3. q2  (q0, w)  w = x01 
 
If w  = 0 then w = .  Then statement (1) follows from def., and statement & (2) and 
(3) show that all the string x01 will be accepted by the above non-deterministic 
automata.  
 
Example 1: Consider the NFA with the formal description as (Q, , , q0, F) where  
Q = {q0, q1, q2},  = {a, b}, q0 is the initial state and q1 is only the final state, and  is 
given by the following table:  

Table 2 
Input from   

 
 

State 
 a b 

 q0 
q1 
q2 

q1, q2 
q1 
q1 

q0 
- 
q2 
 

   
In NFA, though the function  maps to a sub-set of the set of states, yet we generally 
drop braces, i.e., instead of {q0, q1}, we just write q0, q1. 
 
The computation for an NFA is also similar to that of DFA.  Let N = (Q, , , q0, F) 
be an NFA and w is a string over the alphabet .  The string w is accepted by NFA if 
corresponding to the input sequence, there exists a sequence of transitions from the 
initial state to any of the possible final states.  
 

Now, let us check computations (in NFA, there are many possible computations) of 
the string aba.  
 
   (q0, aba)     =  ( (q0, a), ba) 
 
           =  (q1, ba) or  (q2, ba)  
  
           =  ( (q1, b), a) or  ( (q2, b), a)  
 
           = stuck or  (q2, a)  
 
           = q1 (an accepting state) 
 
The above sequence of states shows the final state q1 which is an accepting state.  
Hence, the string aba is accepted by the system and the input sequence of states for the 
input is a

2
b

2
a

0 qqq  q1 
28 
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Try some exercises: 
 

Ex.1) Consider an NFA given in figure 5. Check whether the strings 001, 011101, 
01110, 010 are accepted by the machine, or not? 
 
 
 
 
 
 
 

Fig. 5 
Ex.2)  Give an NFA which accepts all the strings starting with ab over {a,b}. 
 

In unit 1, we discussed DFA and in previous section we discussed NFA. Now a simple 
question arises, are these two automata equivalent?  Reply for that is it is always 
possible to find an equivalent DFA to every NFA. In next section we shall discuss the 
equivalence of DFA and NFA. 
 

2.3   EQUIVALENCE OF NFA AND DFA 

Every time we find that if we are constructing an automata, then it is quite easy to 
form an NFA instead of DFA.  So, it is necessary to convert an NFA into a DFA and 
this is also said to be equivalence of two automata.  Two finite automata M and N are 
said to be equivalent if L(M) = L(N).  
 
From the definitions of NFA and DFA, it is clear that they are similar in all respects 
except for the transition function. In DFA, the transition function takes a state and an 
input symbol to the next state, whereas in NFA, the transition function takes a state 
and an input symbol or the empty string into the set of possible next states. If empty 
string  is used as an input symbol, then the NFA is called -NFA. As an NFA is 
obtained by relaxing some condition of DFA, intuitively it seems that there may be 
some NFAs to which no DFA may correspond.  However, it will be shown below that 
by relaxing the condition, we are not able to enhance computational power of the 
DFAs.  In other words, we establish that for each NFA, there is a DFA, so that both 
recognise/accept the same set of strings. 
 
We now try to find the equivalence between DFA and NFA.  Some DFA can be 
designed to simulate the behaviour of an NFA.  Let us consider M = (Q, , , q0, F) be 
an NFA accepting L(M).  We design a DFA, viz., M  as described below and show 
that the language accepted by M is the same that accepted by M, i.e., the language 
L(M).  M = (Q , , , , F ) where Q  = 2'

0q Q (any state in Q  is denoted by [q1, q2 - - - 
qj] where q1, q2 - - - qj Q), q = [q0 0] and F  is the set of all subsets of Q containing an 
element of F.  
 
Before defining , let us look at the construction of Q , and F .  Machine M is 
initially at q

0q
0 state.  But on application of an input symbol, say a, M can reach any of 

the states in (q0,a).  So M  has to remember all these possible states at any point of 
time.  Therefore, subsets of Q can be defined as the states of M .  Initial state of M  is 
q0,  which is defined as [q0].  A string w accepted by the machine M if a final state is 
one of the possible states M reaches on processing w.  So, a final state in M  is any 
subset of Q containing some final state of M.  Next we can define the transition 
function  as  
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N

1i
i, a) for each i = 1,2…..N 

and take their union to get ([q1, q2…..qN], a).   Defining  with the help of  in this 
way is also said to be subset construction approach.  
  
Example 2: Construct a DFA equivalent to the NFA M, diagrammatically given by   
 

 
 
 
 
 
 

Fig. 6:  NFA 
 

when  for M is given in terms of a transition table, the construction is simpler.  Now, 
let us have a look at the following table3.  
                                                 Table 3 

State/  0 1 
 q0 

          q1 
q0  
q1 

q1 
q0, q1 

      
(i) In this given M, the set of states is {q0, q1}.  The states in the equivalent DFA are 

the  subsets of the states given in the NFA. So the states in DFA are 
subsets of {q0, q1}, i.e., , [q0], [q1], [q0, q1].  

 
(ii) [q0] is the initial state.  
 
(iii) [q0] and [q0, q1] are the final states as these are the only states containing q0, the 

only final state of M.  
 
 Therefore, F  = {[q0], [q0, q1]} 
 
(iv)  is defined by the following state table: 
 
                                                  Table 4 

State/  0 1 
  
 

    [q0] 
 

[q1] 
 

   [q0, q1]  
     

          
 

[q0] 
 

       [q1] 
 
      [q0, q1]    

  
 

[q1] 
 

[q0, q1] 
 

[q0, q1] 

 
We start the construction by considering [qo] first.  We get [qo] and [q1].  Then, we 
construct  for [q1] we get [q1] and [qo, q1].  As [q1] already exists in left most column, 
so we construct  for [qo, q1].  We get [q0, q1] and [q0, q1].   We do not get [q0, q1] and 
[q0, q1]. We do not get any new states and so we terminate the construction of .   
 
When a non-deterministic finite automate has n states, the corresponding finite 
automata has 2n states.  However, it is not necessary to construct  for all these 2n 
states, but only for those states reachable from the initial state.  This is because our 
interest is only in constructing the equivalent DFA.  Therefore, we start the 
construction of  for initial state and continue by considering only states appearing 
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earlier under input columns and constructing  for such states.  If no more new states 
appear under the input columns, we halt.  
 
To prove the equivalence of both automata, we will prove the following theorem:  
 
Theorem1: A language L is accepted by some NFA if and only if it is accepted by 
some DFA.    
 
In the theorem, there are two parts to prove:  

If L is accepted by DFA M , then L is accepted by some NFA M.  
If L is accepted by NFA M , then L is accepted by some DFA M .  
 
The first is the easier to prove.  
 
Theorem1(a) (one direction) : If L is accepted by DFA M , then L is accepted by 
some NFA M.  
 
Proof : Let us compare the definitions of NFA and DFA.  
 
 
 Definition :      A Deterministic Finite Automata (DFA) M  is   

defined by the 5-tuple. 
 

  M  = (Q , , , q , F ) where   '
0

  Q - The finite set of states.  
   - The finite set of symbols, the input alphabet.  
   - Transition function : Q   Q. 
  q0 - An initial state, Q . '

0q '
0q

  F -  A set of final states or accept states, F Q .  
 
 
 Definition :  A Non-deterministic Finite Automata (NFA) M   

is a 5-tuple   
 
  M = (Q, , , q0, F) where   
  Q - is a finite set of states.  
   - is a finite input alphabet.  
   - is a transition function : Q ( { })  2Q. 
  q0 Q is the start state. 
   F Q, is the set of accepting states.  
 
 
The above definitions follow that every DFA is also an NFA, which implies that if 
w L(M ), then w L(M). 
 
The other half of the theorem is in the following theorem: 
 
Theorem1(b): If L is accepted by NFA M = (Q, , , q0, F), then L is accepted by 
some DFA M  = (Q , , , q , F ). '

0
 
Proof :  Construct M  as in the Subset Construction Algorithm.  We will show using 
induction on the length of w.   
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Base case : Let w be an empty string, i.e., if .wthen0w   By definition of NFA 

and DFA both (q0,w) and ( ,w) are in state {q'
0q 0}.  Hence, the result.   

 
Let us assume that this result is true for each string of length n, we will now show that 
this result is true for strings of length (n+1).  
 
Let w = sa with ,nsand)1n(w also a is the final symbol fo w.  As 

,ns therefore, by induction  
 

( ,s) = (q'
0q 0 s)   

 
If {P1, P2,…Pk} be the set of states for non-deterministic finite automata M, then  
 

(q0,w) =  .        (i) )a,P( i

k

1i
 
Next, 

({P1, P2,…Pk},a) =        (ii) )a,P( i

k

1i

also ( , s) = {P'
0q 1, P2,…Pk}.        (iii) 

 
Using Equations (i), (ii) and (iii) we get  

( , w) = ( ( , s), a)  '
0q '

0q
   = (P1, P2,…Pk}, a)  

   =  )a,P( i

k

1i
   = (q0, w).  

 
which shows that the result is true for 1nw when the result is true for a string of 
length n.  
 
Here the result is true for length 0 and for length (n+1) which is implied by the length 
n.  
 
Therefore, the given statement is true for all the strings.  
 
Hence, M and M  both accept the same string w iff ( q ,w) or (q'

0 0,w) contains a 
state in F , or F respectively.  Therefore, 
 

L(M) = L(M ) 
 
For every non-deterministic finite automaton, there exists an equivalent deterministic 
infinite automaton which accepts the same language.  In this way, two finite automata, 
M and M  are said to be equivalent if L(M) = L(M ).  
 
Example 3: Construct a non-deterministic finite automata accepting the set of all 
strings over {a,b} ending in aba.  Use it to construct a DFA accepting the same set of 
strings.  
 
Solution: Required NFA is the one that accepts strings of the form xaba where 
x {a,b}*  
 
 

32 



 
 Non-Deterministic Finite 

Automata 
 
 
 
 
 
 
 

Fig. 7: NFA accepting all the string ended by aba 
 
Transition table of the diagram shown  in Figure 7 is given in table 5. 
                                                 Table 5 

State/  A B 
  q0 

q1 
q2 
q3 

Q0, q1 
- 
q3 
- 

q0 
q2 
- 
- 

                                                         
Now, let us construct its equivalent DFA.  [qo] is the initial state in corresponding 
DFA so starting the  function using [q0] as an initial state, we represent it in table6.  
 
Formally, the DFA is  
 
 A = ({[q0], [q0, q1], [q0, q2], [q0, q1, q3]}, {a,b}, , [q0], {[[q0, q1, q3]})   
   
where  is given by the table 6.  

Table 6 
 
 
 
 
 
 
 
 
 
 

Diagramatically,  DFA is given in figure 8. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8: DFA 
 
This example also highlights one of the reasons for studying NFAs.  The reason is that 
generally, it is easier to construct an NFA that accepts a language than to construct the 
corresponding DFA.  
 
Try some exercises to check your understanding:  
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Ex.4) M = ({q1, q2, q3}, {0,1}, , q1, {q3}) is a NFA, where  is given by  
 
 , (q1, 0) = {q2, q3}, (q1, 1) =  {q1} 
 , (q2, 0) = {q1, q2}, (q2, 1) =   
 , (q3, 0) = {q2}, (q3, 1) =  {q1, q2} 
 
 construct an equivalent DFA 
 
Ex.5) Construct a transition system which can accept strings over the alphabet a,b,  ---

------ containing either cat or rat.  
Ex.6)  Give examples of machines distinguishing DFA and NFA. 
 

 

2.4    EQUIVALENCE OF -NFA AND NFA 

There exist some transitions graphs when no input is applied.  If no input is applied 
then the transition systems are associated with a null symbol .  Every time we can 
find an equivalence in between the systems with -move and without -moves.  With 
the help of an example, we shall find the equivalence of -NFA and NFA.  
 
Suppose we want to remove -move from the transition shown in figure 9:  
 
 
 
 
 

 
Fig. 9: -NFA 

 
In the above transition q0 is an initial state and qf is a final state. For this, we proceed 
as follows:  
If  qi, qj are two states and null string is from qi to qj then :  

(a) Duplicate all the edges starting from qi which are starting from qj 
(b) If qj is a final state, make qi as a final state and if qi is an initial state, make qj as 

an initial state.  
Now let us apply these two rules to the transition in figure 9. First of all, removing  
in between q1 and qf.  
 
 
 
 
 
 

Fig. 10: Removal of one  
 
Now, again apply the same rule to remove the remaining -move. 
 
 
 
 
 
 

Fig. 11:  After removing both   
 
This transition system is free from  and is equivalent to the -NFA.  
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As you know that a language which can be defined by a regular expression is called a 
regular language,  there are several questions related to regular languages that one can 
ask.  The important one is: are all languages regular?  The simple answer is no.  The 
languages which are not regular are called non-regular languages.  In this section, we 
give a basic result called “pumping lemma”.  Pumping lemma gives a necessary 
condition for an input string to belong to a regular set, and also states a method of 
pumping (generating) many input strings from a given strings all of which should be 
in the language if the language is regular.  As this pumping lemma gives a necessary 
(but not sufficient) condition for a language to be regular, we cannot use this lemma to 
establish that a given language is regular, but we can use it to prove that a language is 
not regular by showing that the language does not obey the lemma.   
 
The pumping lemma uses the pigeonhole principle which states that if p pigeons are 
placed into less than p holes, some hole has to have more than one pigeon in it.  The 
same thing happens in the proof of pumping lemma.  The pumping lemma is based on 
this fact that in a transition diagram with n states, any string of length greater than or 
equal to n must repeat some state.  
 
Pumping lemma (PL):  

If L is a regular language, then there exists a constant n such that every string w in L, 
of length n or more, can be written as w = xyz, where 
 
(i) y  > 0 
(ii) xy   n 
(iii) xyiz is in L, for all i 0 here yi denotes y repeated i times and yo =  
 
Before proving this PL, a question that may have occurred by now is: Are there any 
languages that are not accepted by DFA’s? 
 
Consider the language L = {w w=0k1k, where k is a positive integer}. 
 
Proof of (PL): Since we have L is regular, there must be a DFA, say A such that  
 
 L = L(A) 
 
Let A have n states, and a string w of length  n in L which is expressed as   
 
 w = a1 a2 - - - - - - aK where k  n with general elements ai, aj, for  
 
 , the string w can be written as  kji1

 
w = a1 a2 - - - - - - - ai 1 ai ai+1 ai+2 - - - - aj 1 aj aj+I  - - - ak  

  
 and w = xyz 
  
 so x = a1 a2  - - - ai 
 
      y = ai+1, ai+2 - - - aj 
 
 and z = aj+1 , aj+2- - - - ak 
 
Let q0 be the initial state and further let  
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 q1 =  (q0, a1), q2 =  (q0, a1 a2) 
 
qi be the state in which A is after reading the first i symbols of w.  
 
Since there are only n different states at least two of q0, q1 - - - qn which are (n+1) in 
numbers, must be same say, qi=qj where 0   Then by repeating the loop from 
q

.nji
i to qi with label ai+1 - - - - aj zero times once, or more, we get xyiz is accepted by A, 

because in case of each of the string xyiz for i = 1,2…, the string when given as an 
input to the machine in the initial state q0, reaches the final state qn.  
Diagrammatically.  

 
 
 
 
 
 

Fig. 12: representation of xyiz 
 
Hence xyiz  L (A)  i 0. 
 
How to use PL in establishing a given language as non-regular?  

We use the PL to show that a language L is not regular through the following 
sequence of steps: 
 
Step1:  Start by assuming L is regular. 
 
Step2: Suppose corresponding DFA has n states.  
 
Step3: Choose a suitable w such that w L with .nw  
 
Step4: Apply PL to show that there exists i  0 such that xyiz L, where w = xyz 

for some strings xyz.  
 
Step5: Thus, we derive a contradiction by picking i, which concludes that assumption 

in step 1 is false.  

Example 4:  Consider L = }.0n0
2n{  

 
Suppose L is regular.  Then there exists a constant n satisfying the PL conditions.   
 

Now w = 2n nwandL0
2

 
 
Write w = xyz; where 0yandnxy  and hence y  n  
 
By PL, xyyz L. 
 
Here 2nw  
 
  2nxyz  
 
  2nzyx  
 
  2n.zyyx2 nn ;  [as x  > 0 and ]nxy  

  2nxyyz2 nn  
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(n+1)2 is the next perfect square after n2, therefore, 
 
xyyz is not of square length and is not in L.  Since we have derived a contradiction, 
which concludes that L is not regular.  
 
Let us try some exercises: 
 

Ex.7)  Show that the following languages are not regular 
 
 (i)  L1 = {0m1m : m 0} 
 
 (ii) L2 = {0i1j  2K : 0 i < j < K} 
 

(iii) L3 = {ap : p is prime} 
 

(iv) L4 = {ww w {0,1}*} 

(v) L6 = {0n1n! n>0} 

Ex.8) Give an example of a language which is not regular. Justify your answer. 
 

 
 

2.6 CLOSURE PROPERTIES  
(Regular Languages and Finite Automata) 

Suppose L and M are two regular languages, then if the operations applied to L and M 
results regular language, then the property is called closure property.  The closure 
properties are very useful for regular languages and finite automata.  The operations 
applied for regular languages produce regular language are union, intersection, 
concatenation, complementation, Kleenstar and difference.  With the help of closure 
properties, we can easily construct the finite automata which accepts the language 
which is union, intersection, …, of regular languages.  
 
Before discussing the closure properties, let us define a language of a DFA.  Suppose 
M = (Q, , , q0, F), and the language accepted by M is L(M) and is defined as L(M) 
= {S *(q0,S) F}.  That is each string in L(M) is accepted by M.  If L = L(M), then 
L is regular language.  Let us discuss few theorems, showing the closure properties of 
regular languages and finite automata.    
 
Theorem2: If L and M are regular languages, then L+M, LM and L* are also regular 
languages.  
  
L and M being given to be regular languages can be denoted by some regular 
expressions, say, l and m.  Then, (l+m) denotes the language L+M.  Also, the regular 
expression lm denotes the language LM.  (l)* denotes the language L*.  Therefore, all 
three of these sets (i.e., languages) of words are definable by regular expressions, and 
hence are themselves regular languages.  
 
Note: If any language can be denoted by a regular expression, then that language is by 
definition a regular language.   ,  
 
Complements and Intersection 
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the language of all strings of letters from * that are not in L, i.e., L = * L.  
 
Example 5: Let L be the language over the alphabet  = {a,b} having all the words 
which start with the letter a and no other words over .  Then, L is the language of the 
all other words that do not have the first letter as a.   
 
Example 6: Suppose L is a language over {a,b} ending with ba, then L is the 
language of over {a,b} of all other words not ending with ba.   
 

Theorem 3: If L is a regular language, then L  is also a regular languages.  In other 
words, the set of regular languages is closed under complementation.  
 

Proof :  We establish the result by constructing an FA say M , the language L .   As L 
is given to be regular, therefore there is as FA, say M that recognizes L.  
 

If L = *, then L  = , which is, by definition, a regular language.   
 
If  L * is a regular language, then there is some FA that accepts the language L.  
 
At least one of the states of the FA is a final state and as L *, at least one of the 
states must not be a final state.  The required FA has the same set of states, same set of 
input symbols, same transition function and same initial state as M.  However, if S is 
the set of all states of M and F is the set of all final states of M, then set S  F of all 

non-final states of M serves as set of final states of the proposed FA viz. M .   
 

The fact that M  is the FA that recognises the language L , follows from the 
following:  
 

Let x L  = *  L   x L     
 

 the string x when given to M as input string in the initial state terminates in a non-
final state of M, i.e., terminates in a state belonging to S  F. 
 

  M  accepts x 
 
Theorem 4:  If L and M are regular languages, then L M is also a regular language.  
In other words, the set of regular languages is closed under intersection.  
 
Proof:  We can prove this theorem in two ways:  One by De Morgan’s Law or by 
constructing an appropriate FA.  Here the proof with the help of De Morgan’s law is 
given, and leave the proof based on construction of an appropriate FA to the students 
as an exercise.  
 
For any two general sets L and M, whether regular languages or not, by De Morgan’s 
Laws, we have  
 

L M = ( L + M ). 
 

In view of the fact that complement of a regular language is regular, the languages L  

and M  are regular languages, given L and M are regular.  Further, the fact that the 

sum of two regular languages is regular, makes L + M  as a regular language.   38 
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Hence, its complement ( L + M ) = L M, is regular.  
 
 The following discussion, based on processing of two FAS in parallel, helps us in the 
construction of an FA for the union of two regular languages.  
 
Example 7: Suppose we take the two machines whose state graphs are given in the 
figure below:  
 
 
 
 
 
 
 
 
 
 
 
 
                   (a) :M1                                                                        (b):M2  

Fig.13 
 
We can easily verify that the machine (M1) of figure 14 accepts all strings (over {a, 
b}) which begin with two b’s.  The other machine (M2) in figure 15accepts strings 
which end with two b’s.  Let’s try to combine them into one machine which accepts 
strings which either begin or end with two b’s.  
 
Why not run both machines at the same time on an input?  We could keep track of 
what state each machine is in, by placing pebbles upon the current states and then 
advancing them according to the transition functions of each machine.  Both machines 
begin in their starting states, as pictured in the state graphs below:  
 
 
 
 
 
 
 
 
 
 
 
 
                                       (a)                                                                                         (b) 
 

Fig. 14: Pebbel on so and qo 
 
With pebbles on s0 and q0,  if both machines now read the symbol b on their input 
tapes, they move the pebbles to new states and the machines assume the following 
configurations: 
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(a)                     (b) 
 

Fig. 15: Pebble on s1 and q1 
 
with pebbles on s1 and q1.  The pebbles have advanced according to the transition 
functions of the machines.  Now let’s have them both read as an a.  At this point, they 
both advance their pebbles to the next state and enter the configurations  
 
 
 
 
 
 
 
 
 
 

(a)      (b)       
 

Fig. 16: Pebble on s3 and q0 
 
With this picture in mind, let’s trace the computations of both machines as they 
process several input strings.  Pay particular attention to the pairs of states the 
machines go through.  Let our first string be bbabb, which is accepted by both the 
machines.  

Table7 
Input B            b           a          b         b    
M1’s states 
M2’s states 

s0                 s1           s2         s2         s2       s2  
q0                 q1          q2         q0            q1          q2   

 
Now, let us look at an input string which neither of the two machines accepts say 
babab. 

Table 8 
Input b            a           b          a         b    
M1’s states 
M2’s states 

s0                 s1          s3          s3        s3        s3  
q0                q1          q0         q1            q0           q1   

 
And finally, we consider the string baabb which will be accepted by M2 but not M1.  
 

Table 9 
Input b            a           a          b         b    
M1’s states 
M2’s states 

s0                 s1          s3          s3        s3        s3  
q0                q1          q0         q0            q1           q2   

 
If we imagine a multi-processing finite automaton with two processessors (one for M1 
and one for M2), it would probably look just like the pictures given above.  Each of its 
state is a pair of states, one from each machine, corresponding to the pebble positions.  
Then, if a pebble ended up on an accepting state,  for either machine (that is, either s2 
or q2), our multi-processing finite automaton would accept the string.   
The above discussion helps us in seeing the truth of the following statement 
intuitively: We construct the required machine by simulating the multi-processing 
pebble machine discussed above.   
 
Theorem 5:  The class of sets accepted by finite automata is closed under union.  
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Proof Sketch : Let M1 = (S, , , s0, F) and M2 = (Q, , , q0, G) be two arbitrary 
finite automata.  To prove the theorem, we must show that there is another machine 
(M3) which accepts every string accepted by M1 or M2 and no other string.   
 
We show that the required machine is M3 = (S  Q, , , < s0, q0 >, H) where  and H 
will be described presently.  
 
The transition function is defined as  
 

 (<si, qi >, a) = < (si, a), (qi, a)>. 
 

It can easily be seen that  is a function from S  Q to S  Q.  
 
A state in M3 is a final state in M3 if and only if either its first component is in F, i.e., 
is a final state of M1 or its second component is in G, i.e., is a final state of M2.  In 
cross product notation, this is :  
 

H = (F  Q) (S G). 
 
This completes the definition of M3.   We can easily see that M3 is indeed a finite 
automaton because it satisfies the definition of finite automata.  We claim it does 
accept T(M1) T(M2) since it mimics the operation of our intuitive multi-processing 
pebble machine.  The remainder of the formal proof (which we shall leave as an 
exercise) is merely an introduction on the length of input strings to show that for all 
strings x over the alphabet I:  
 

x T(M1) T(M2)iff *(s0,x) F or *(q0,x) G 
                   iff (<s*

0, q0 > x) H.  
 
Thus, by construction we have shown that the class of sets accepted by finite automata 
is closed under union.  
 
By manipulating the notation, we have shown that two finite automata given in figure 
13 (a) and (b) can be combined in a special way to prove the desired result, as shown 
in figure 17. 
 
 
 
 
 
 
 
 
 
 

Fig. 17:  Union of M1 and M2 
 
Note that not all pairs of states are included in the state graph.  (For example, <s0, q1> 
and <s1, q2> are missing.)  This is because it is impossible to get to these states from 
<s0, q0>.   
 
This is indeed a complicated machine!  But, if we are a bit clever, we might notice 
that if the machine enters state s2, q2, then it remains in one of the states (s2, q0), (s2, 
q1), (s2, q2) all of which are final states.   We may replace all such stages of M3 by a 
single state say s2q1, which is also a final state and get a smaller but equivalent 
machine as shown in Figure 18: 
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Fig. 18:  Reduced Union Machine 
 
Now check your  understanding by the following exercises.  
 
 

Ex. 9)  For each of the following pairs of regular languages, L and M find a regular 
 expression and an FA that correspond to L M:  
 
 L       M 
 
1. (a+b)*a       (a+b)*b 
 
2. (a+ab)* (a+ )      (a+ba)*a 
 
3. (ab*)*       b(a+b)* 
 
4. (a+b)*a       (a+b)* aa (a+b)* 
 
5. All strings of even length    b(a+b)*  
 = (aa+ab+ba+bb)* 
 

 

2.7 EQUIVALENCE OF REGULAR  
EXPRESSION AND FA 

As you have seen in Unit 1, all the regular languages can be written as regular 
expression and vice-versa.  Do you find any relation in regular expression and a 
transition system? A regular expression can have , , any input symbol, +, *, 
concatenation.  Let us find the transition system of these.  
 
 
 
 
 

Fig. 19:  Transition diagram equivalent to  
 
 
 
 
 
 
 

Fig. 20: Transition diagram equivalent to Ø 
 
 
 
 
 
 
 

Fig. 21: Transition diagram equivalent to a 
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Fig.  22: Transition diagram equivalent to R= P + Q 
 
 
 
 
 
 
 

Fig.  23: Transition diagram equivalent to R = PQ 
 
 

 
 
 
 
 
 
 

Fig.  24: Transition diagram equivalent to R = P* 
 
Using above equivalence of regular expression and transition systems, we can easily 
make use of equivalence of -NFA and NFA and also of NFA and DFA, and finally 
we can find the equivalence between a regular expression and FA.  
 
Example 8: Let us try to get the finite automata which is equivalent to regular 
expression (a+b)* (ab+ba) (a+b)*.  
 
Step 1: Construction of equivalent -NFA is: 
 

(a+b)* (ab+ba) (a+b)* is 
 
 

 
 
 
 

Fig. 25: A Complete regular expression 
 
It is concatenation of (a+b)*, (ab+ba) and (a+b)*,after applying concatenation we get 
 
 
 
 
 
 

Fig. 26: After concatenation 
 
Then removing the * from (a+b)* at both places and applying union rule for ab + aa we get 
 
 
 
 
 
 
 

Fig. 27: after removing *and + 
 
Now concatenating ab and ba, we get 
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Fig. 28: equivalent  -NFA 
 
Step 2 : Construction of equivalent NFA, Let us remove every  one by one 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 29: Removing  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 30: Removing  and Minimizing the state 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  31: Removing  
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Fig.  32: Removing  

 
After minimizing the number of states, we get, 
 
 
 
 
 
 
 
 
 
 
 

Fig. 33: Equivalent NFA 
 
Step 3: Construction of equivalent DFA. 
 

Table 10 
States Input 

 A b 
 

    [q0] 
 
    [q0,q1] 

 
    [q0, q2] 

 

 
 

 

[q0, q1] 
 

[q0, q1] 
 

[q0, q2, q3] 
 

[q0, q1, q3] 
 
 

[q0, q1, q3] 

 

[q0, q2] 
 

[q0, q2, q3] 
 

[q0, q2] 
 

[q0, q2, q3] 
 
 

[q0, q2, q3] 
 
 

 

 [qo, q1, q3] 

[qo, q2 q3] 

 
Diagrammatically it is shown in Figure 34. 
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Fig. 34: Equivalent DFA 

 
 
Now try some exercises. 
 
 

Ex.10) Find the finite automata equivalent to the following regular expressions: 
 
 (i) ba+(aa+b) a*b 
 
 (ii) b+aa+aba*b.  
 

(iii) (a+b) b (a+b)* 
 

As you have seen that there exists an equivalent NFA with -transitions, NFA without 
-transitions and DFA to each regular expression.  But if there is some transition 

system, then there exists equivalent regular expression.  The algorithm  we are going 
to discuss for this purpose is not restricted to NFA, DFA.  This algorithm can be 
applied to each transition system to each transition system to find its equivalent 
regular expression.  We convert a transition system to a regular expression by 
reducing the states.  These states are reduced by replacing each state one by one with a 
corresponding regular expression.  The following steps are used:  

 If the label is (a, b), then it is replaced by a+b.  
 First of all, eliminate all the states which are not initial or final states.  If we 

replace the state qe from the transition given below, 
 
  
 
 
 
 
 
 
 
 
 

Fig. 35 
 
then qe is eliminated by writing its corresponding regular expression R1R2

*R3+R4 
from qa to qb, as follows:  
 
 
 
 
 

Fig. 36 
 
Continue the process till only initial and final states remain.  
 
 If initial state is final state and the regular expression is R, such as 

 
 
 
 
 

Fig. 37 
 

the equivalent regular expression is R* 46 
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 If initial state is not final state and is like, 

 
 
 
 
 
 
 
 

Fig. 38 
 then this can also be written as 
 
 
 
 
 
 

Fig. 39 
 
which is the equivalent regular expression.  If these are n final states and R1, R2, 
R3…Rn are the regular expressions accepted by these states, then the regular 
expression accepted by the transition system will be R1+R2+…..+Rn.  
 
Now let us try some examples to understand the algorithm well.  
 
Example 9:  Find the regular expression equivalent to the given system.  
 
 
 
 
 
 
 
 

Fig. 40 
 
There is no state which is neither initial n or final so this can be written as  
 
 
 
 
 
 
 

Fig. 41 
 
The equivalent r.e. is b*a(a+b)*.  
  
Example10: Find a regular expression equivalent to  
 
 
 
 
 
 
 

Fig. 42 
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Fig. 43: Equivalent NFA 
 
There are two final states, q0 and q1.  The regular expression accepted by q0 is a* and 
the regular expression accepted by q1 is a*bb*.  Then, the regular expression accepted 
by the transition system is  
 
 a*+a*(bb*) = a*( +bb*) (distributive property) 
 
      = a*b* is the equivalent regular expression.  
 
Try some exercise. 
 
 

Ex.11) Take any regular expression and find the transition system.  Using this 
transition system, find equivalent regular expression and check your result. 

 

 

2.8    SUMMARY 

In this unit, we have covered the following:  

1. Non-deterministic finite automata. 
 
2. There exist, an equivalent DFA for every NFA.  
3. Two Automata M and N are said to be equivalent iff L(M) = (L(N).  
 
4. Pumping lemma with its proof.  
 
5. Application of pumping lemma in establishing a given language as non-

regular. 
 
6. Closure properties of regular language and finite automata. 
 
7. Equivalence of regular expression and finite automata.  The regular language 

can be found from a regular expression as well as finite automata.  So, these 
two approaches of regular languages are equivalent.  

 

2.9    SOLUTIONS/ANSWERS 

Ex.1)  is given by  
 

Input   
 

 
State 

 0 1 
 q0 

q1 
q2 
 

q0, q1 
- 
- 

q0 
q2 
- 
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 (q0, 001) = (q0, 01) = (q1, 1) = q2   (Accepting state) 
 
 (q0, 011101) = (q0, 11101)   
 
           = (q0, 1101)   
 

         = (q0, 101)   
 

         = (q0, 01)   
 
         = (q0, 1)   

 
           =   q2   (accepting state) 
 
 (q0, 01110) = (q0, 1110)   
 
           = (q0, 110)   
 

         = (q0, 10)   
 

         = (q0, 0)   
 

                    = q0 or q1 (Not an accepting state)   
 
 
 (q0, 010) = (q0, 10)   
 
      = (q0, 0)   
 
               = q0 or q1 (Not an accepting state)   
 
So, strings 001 and 011101 are accepted by the given automata.  
 
Ex.2)  
 
 
 
 
 
 

Fig. 44 
Ex.3) NFA 
 
 
 
 
 
 
 
 
 
 

Fig. 45 
 
 Transition function is given in the table below: 
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States 0 1 
 

 
 q0 

q1 
q2 
q3 

 

 
q1 
- 
- 
- 

 
q2 
q3 
- 
- 

 
 Equivalent DFA is  
 

States 0 1 
  

 

[q0] 
 

[q1] 
 

[q2] 
 

[q3] 
 

          
 

[q1] 
 

       [ ] 
 
      [q3]  
 
       [ ]           

  
 

[q2] 
 

[q3] 
 

[ ] 
 

[ ] 

 
Ex.4) DFA is 
 

State 0 1 
  [q1] 
[q2, q3] 
[q1, q2] 

[q1, q2, q3] 
     

    [q2, q3] 
[q1q2] 

[q1, q2, q3] 
[q1, q2, q3] 

 

 [q1] 
[q1, q2] 

[q1] 
[q1, q2] 

 
 
Ex.5)  
 
 
 
 
 

Fig. 46 
 
Ex.7) (i) L1 = {0m1m:m }0  
 
      w = xyz = 0m1m  .m2w  
 
      Consider three cases 
 
 Iff y = 0k  w = 0m k0k1m 
 
 xyiz = 0m k0.ik1m 
  
 xyiz = 0m+(I-1)k1m 
 
   xyiz  L1 as m+(i 1)k .m  
 

Similarly, case II with y = 0k1l and case III with y = 1k can be assumed and 
 will not belong to L1.  
 
 So, L1 is not regular 50 
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(ii) Similarly, as part (i) 
 
(iii) L3 {ap:p is prime} 
 
 Suppose y = am, m>0 and w = xyz = ap so pw  
 

 xyiz  = xyyi 1z 
 

 xyiz   =  zy)1i(yx  
               =  y)1i(w  

 
               =  y)1i(p  

 
  =  .m)1i(p  

 
 If we choose i 1 a multiple of p, then we get  
 

 xyiz   =  p+kpm  
  
           = (1+km)p 

 
  which is not a prime number  
 
 so, xyiz  L3 
 
(iv) Suppose L is regular, and n be the number of states in automata M.   
 
 ww = xyz with .nxy,0y  
 
 Let us consider ww = 01n01n L4 
 
 and .n)1n(2ww   
  

I case  : y has no 0’s, i.e., y = 1k; k  1 
II case : y has only one 0. 

 Here, y cannot have two 0’s.  If so . ut 2ny   B .nxyy  
 

In case I, assume i = 0.  Then xyiz = xz and is of the form 0 1m 0 1n, where m 
= n  k < n or of the form 0 1n 0 1m.  These both values cannot be written in 
form of ww with w {0, 1}* and so xz L.  In case II also, take i = 0 then 0 
will be removed and xz = 0 1n 1n again this cannot be written in ww form.  
Thus, in both the cases we get a contradiction.  Therefore, L is not regular.  

 
(v) Left as an exercise.  
 
Ex.8) Any example of a language may be given which is not regular.  Use again 

pumping lemma to justify  
 
Ex.9) 1.  

2. (a*)a 
3.  
4.       (a+b)* aa 
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       5.  (aa+ab+ba+bb)* 
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Ex.10) (i) Equivalent NFA is  
 
 
 
 
 
 
 
 
 
 

Fig. 47 
(ii) NFA is 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 48 
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