

BIJU PATNAIK UNIVERSITY OF TECHNOLOGY,

ODISHA

Lecture Notes

On

Prepared by,

Dr. Subhendu Kumar Rath,

BPUT, Odisha.

THEORY OF COMPUTATION
MODULE -1

UNIT - 2

 Non-Deterministic Finite

Automata UNIT 2 NON-DETERMINISTIC FINITE
AUTOMATA

Structure Page Nos.

2.0 Introduction 25
2.1 Objectives 25

2.2 Non-Deterministic Finite Automata NFA 26
2.3 Equivalence of NFA and DFA 29
2.4 Equivalence of -NFA’s and NFA’s 34
2.5 Pumping Lemma 34
2.6 Closure Properties (Regular Languages and Finite Automata) 37
2.7 Equivalence of Regular Expression and FA 42
2.8 Summary 48
2.9 Solutions/Answers 48

2.0 INTRODUCTION

In our daily activities, we all encounter the use of various sequential circuits. The
elevator control which remembers to let us out before it picks up people going in the
opposite direction, the traffic-light systems on our roads, trains and subways, all these
are examples of sequential circuits in action. Such systems can be mathematically
represented by Finite state machines, also called finite automata or other powerful
machine like turning machines. In the previous unit, we introduced the concept of
Deterministic Finite Automata (DFA), in which on an input in a given state of the
DFA, there is a unique next state of DFA. However, if we relax the condition of
uniqueness of the next state in a finite automata, then we get Non-Deterministic Finite
Automata (NFA).

A natural question which now arises is whether a non-deterministic automata can
recognize sets of strings which cannot be recognized by a deterministic finite
automata. At first, you may suspect that the added flexibility of non-deterministic
finite automata increases their computational capabilities. However, as we shall now
show, there exists an effective procedure for converting a non-deterministic FA into
an equivalent deterministic one. This leads us to the conclusion that non-deterministic
FA’s and DFA’s have identical computational capabilities.

2.1 OBJECTIVES

After studying this unit, you should be able to

 define a non-deterministic finite automata;
 show the equivalence of NFA and DFA;
 compute any string or language in any NFA;
 state and prove pumping lemma;
 apply pumping lemma for a language which is not regular;
 apply closure properties of regular language and finite automata; and
 find an equivalent regular expression from a transition system and vice-versa.

In unit 1 we discussed about finite automata. You may wonder that in finite automata
for each input symbol there exists a unique state for processing of it. Do you think
that there may be more than one possible state, or there may not be any state for

 25

Finite Automata and
Formal Languages

processing of any letter. If for processing of any letter there is more than one state or
none state, then, the auotmata is known as non-deterministic finite automata (NFA).

2.2 NON-DETERMINSTIC FINITE AUTOMATA

You have already studied finite automata (though ‘automata’ is a plural form of the
noun ‘automaton’, the word ‘automata’ is also used in singular sense). Now consider
an automata that accepts all and only strings ending in 01, represented
diagrammatically, as follows:

Fig. 1: Transition Diagram

In the case of the finite automata shown in figure 1, the following points may be
noted:

(i) On input 0 in state q0, the next state may be either of the two states viz., q0 or q1.
(ii) There is no next state on input 0 in the state q1.
(iii) There is no next state on input 0 and 1 in the state q2.

In this transition system, what happens when this automata processes the input
.00101?

Fig. 2: Processing of string 00101

Here from the initial state q0, for the processing of alphabet 0, there are two states at
once or viewed another way, it can be ‘guessed” which state to go to next. Such a
finite automata allows to have a choice of 0 or more next states for each state input
pair and is called a non-deterministic finite automata. An NFA can be in several
states at once.

Fig. 3: Transition diagram

 26

 Non-Deterministic Finite

Automata
Before going to the formal definition of NFA, let us discuss one more case of non-
determinism of finite automata. Suppose Q = {q0, q1, q2}, = {0, 1}, q0 is an initial
state and q2 is final state. Again, suppose the processing of any input symbol does not
result in the transition to a unique state, but results a chain of states. Let us consider a
machine given in figure 3.

For the sake of convenience, let us check the processing of any input symbol. From
the state q0, after processing 0, resulting states are q0, q1, q2 and for input symbol 1,
there are three possible states q0, q1 and q2 not a unique state. It clarifies that a non-
deterministic automata can have more than one possible state or none state after
processing any input symbol from .

Let us check how the string 01 is processed by the above automata. Here we have
three paths to reach to the final state:

 0 1
(i) q0 q0 q2

 0 1
(ii) q0 q1 q2

 0 1
(iii) q0 q2 q2

A generalisation which is obtained here by allowing of several states as a result of the
processing of an input symbol is called non-determinism. If from any state, we can
reach to several states or none state, then the finite automata becomes non-
deterministic in nature.

Formally, a non-deterministic finite automata is a quintuple

 A = (Q, , , q0, F)
Where

 * Q is a finite set of states
 * is a finite alphabet for inputs
 * is a transition function from Q to the power set of Q i.e. to 2Q
 * q0 Q is the start/initial state
 * F Q is a set of final/accepting states.

The NFA, for the example just considered, can be formally represented as:

 ({q0, q1, q2}, {0,1}, , q0, {q2})

where the transition function, is given by the table 1:

 Table1
States 0 1
→q0

 q1

{q0,q1}

Ø

Ø

{q0}

{q2}

Ø

q2

Now, let us prove that the NFA

 27

Finite Automata and
Formal Languages

Fig. 4: NFA accepting x01

accepts the language {x01 : x *} of all the strings that terminate with the sub-string
01. A mutual induction on the three statements below proves that the NFA accepts the
given language.
1. w * q0 (q0,w)
2. q1 (q0, w) w = x0
3. q2 (q0, w) w = x01

If w = 0 then w = . Then statement (1) follows from def., and statement & (2) and
(3) show that all the string x01 will be accepted by the above non-deterministic
automata.

Example 1: Consider the NFA with the formal description as (Q, , , q0, F) where
Q = {q0, q1, q2}, = {a, b}, q0 is the initial state and q1 is only the final state, and is
given by the following table:

Table 2
Input from

State
 a b

 q0
q1
q2

q1, q2
q1
q1

q0
-
q2

In NFA, though the function maps to a sub-set of the set of states, yet we generally
drop braces, i.e., instead of {q0, q1}, we just write q0, q1.

The computation for an NFA is also similar to that of DFA. Let N = (Q, , , q0, F)
be an NFA and w is a string over the alphabet . The string w is accepted by NFA if
corresponding to the input sequence, there exists a sequence of transitions from the
initial state to any of the possible final states.

Now, let us check computations (in NFA, there are many possible computations) of
the string aba.

 (q0, aba) = ((q0, a), ba)

 = (q1, ba) or (q2, ba)

 = ((q1, b), a) or ((q2, b), a)

 = stuck or (q2, a)

 = q1 (an accepting state)

The above sequence of states shows the final state q1 which is an accepting state.
Hence, the string aba is accepted by the system and the input sequence of states for the
input is a

2
b

2
a

0 qqq q1
28

 Non-Deterministic Finite

Automata

Try some exercises:

Ex.1) Consider an NFA given in figure 5. Check whether the strings 001, 011101,
01110, 010 are accepted by the machine, or not?

Fig. 5
Ex.2) Give an NFA which accepts all the strings starting with ab over {a,b}.

In unit 1, we discussed DFA and in previous section we discussed NFA. Now a simple
question arises, are these two automata equivalent? Reply for that is it is always
possible to find an equivalent DFA to every NFA. In next section we shall discuss the
equivalence of DFA and NFA.

2.3 EQUIVALENCE OF NFA AND DFA

Every time we find that if we are constructing an automata, then it is quite easy to
form an NFA instead of DFA. So, it is necessary to convert an NFA into a DFA and
this is also said to be equivalence of two automata. Two finite automata M and N are
said to be equivalent if L(M) = L(N).

From the definitions of NFA and DFA, it is clear that they are similar in all respects
except for the transition function. In DFA, the transition function takes a state and an
input symbol to the next state, whereas in NFA, the transition function takes a state
and an input symbol or the empty string into the set of possible next states. If empty
string is used as an input symbol, then the NFA is called -NFA. As an NFA is
obtained by relaxing some condition of DFA, intuitively it seems that there may be
some NFAs to which no DFA may correspond. However, it will be shown below that
by relaxing the condition, we are not able to enhance computational power of the
DFAs. In other words, we establish that for each NFA, there is a DFA, so that both
recognise/accept the same set of strings.

We now try to find the equivalence between DFA and NFA. Some DFA can be
designed to simulate the behaviour of an NFA. Let us consider M = (Q, , , q0, F) be
an NFA accepting L(M). We design a DFA, viz., M as described below and show
that the language accepted by M is the same that accepted by M, i.e., the language
L(M). M = (Q , , , , F) where Q = 2'

0q Q (any state in Q is denoted by [q1, q2 - - -
qj] where q1, q2 - - - qj Q), q = [q0 0] and F is the set of all subsets of Q containing an
element of F.

Before defining , let us look at the construction of Q , and F . Machine M is
initially at q

0q
0 state. But on application of an input symbol, say a, M can reach any of

the states in (q0,a). So M has to remember all these possible states at any point of
time. Therefore, subsets of Q can be defined as the states of M . Initial state of M is
q0, which is defined as [q0]. A string w accepted by the machine M if a final state is
one of the possible states M reaches on processing w. So, a final state in M is any
subset of Q containing some final state of M. Next we can define the transition
function as

 29

Finite Automata and
Formal Languages ([q1,…..qN], a) = So, we have to apply to (q).a,q(U i

N

1i
i, a) for each i = 1,2…..N

and take their union to get ([q1, q2…..qN], a). Defining with the help of in this
way is also said to be subset construction approach.

Example 2: Construct a DFA equivalent to the NFA M, diagrammatically given by

Fig. 6: NFA

when for M is given in terms of a transition table, the construction is simpler. Now,
let us have a look at the following table3.
 Table 3

State/ 0 1
 q0

 q1
q0
q1

q1
q0, q1

(i) In this given M, the set of states is {q0, q1}. The states in the equivalent DFA are

the subsets of the states given in the NFA. So the states in DFA are
subsets of {q0, q1}, i.e., , [q0], [q1], [q0, q1].

(ii) [q0] is the initial state.

(iii) [q0] and [q0, q1] are the final states as these are the only states containing q0, the

only final state of M.

 Therefore, F = {[q0], [q0, q1]}

(iv) is defined by the following state table:

 Table 4

State/ 0 1

 [q0]

[q1]

 [q0, q1]

[q0]

 [q1]

 [q0, q1]

[q1]

[q0, q1]

[q0, q1]

We start the construction by considering [qo] first. We get [qo] and [q1]. Then, we
construct for [q1] we get [q1] and [qo, q1]. As [q1] already exists in left most column,
so we construct for [qo, q1]. We get [q0, q1] and [q0, q1]. We do not get [q0, q1] and
[q0, q1]. We do not get any new states and so we terminate the construction of .

When a non-deterministic finite automate has n states, the corresponding finite
automata has 2n states. However, it is not necessary to construct for all these 2n
states, but only for those states reachable from the initial state. This is because our
interest is only in constructing the equivalent DFA. Therefore, we start the
construction of for initial state and continue by considering only states appearing

30

 Non-Deterministic Finite

Automata
earlier under input columns and constructing for such states. If no more new states
appear under the input columns, we halt.

To prove the equivalence of both automata, we will prove the following theorem:

Theorem1: A language L is accepted by some NFA if and only if it is accepted by
some DFA.

In the theorem, there are two parts to prove:

If L is accepted by DFA M , then L is accepted by some NFA M.
If L is accepted by NFA M , then L is accepted by some DFA M .

The first is the easier to prove.

Theorem1(a) (one direction) : If L is accepted by DFA M , then L is accepted by
some NFA M.

Proof : Let us compare the definitions of NFA and DFA.

 Definition : A Deterministic Finite Automata (DFA) M is

defined by the 5-tuple.

 M = (Q , , , q , F) where '
0

 Q - The finite set of states.
 - The finite set of symbols, the input alphabet.
 - Transition function : Q Q.
 q0 - An initial state, Q . '

0q '
0q

 F - A set of final states or accept states, F Q .

 Definition : A Non-deterministic Finite Automata (NFA) M

is a 5-tuple

 M = (Q, , , q0, F) where
 Q - is a finite set of states.
 - is a finite input alphabet.
 - is a transition function : Q ({ }) 2Q.
 q0 Q is the start state.
 F Q, is the set of accepting states.

The above definitions follow that every DFA is also an NFA, which implies that if
w L(M), then w L(M).

The other half of the theorem is in the following theorem:

Theorem1(b): If L is accepted by NFA M = (Q, , , q0, F), then L is accepted by
some DFA M = (Q , , , q , F). '

0

Proof : Construct M as in the Subset Construction Algorithm. We will show using
induction on the length of w.

 31

Finite Automata and
Formal Languages

Base case : Let w be an empty string, i.e., if .wthen0w By definition of NFA

and DFA both (q0,w) and (,w) are in state {q'
0q 0}. Hence, the result.

Let us assume that this result is true for each string of length n, we will now show that
this result is true for strings of length (n+1).

Let w = sa with ,nsand)1n(w also a is the final symbol fo w. As

,ns therefore, by induction

(,s) = (q'
0q 0 s)

If {P1, P2,…Pk} be the set of states for non-deterministic finite automata M, then

(q0,w) = . (i))a,P(i

k

1i

Next,

({P1, P2,…Pk},a) = (ii))a,P(i

k

1i

also (, s) = {P'
0q 1, P2,…Pk}. (iii)

Using Equations (i), (ii) and (iii) we get

(, w) = ((, s), a) '
0q '

0q
 = (P1, P2,…Pk}, a)

 =)a,P(i

k

1i
 = (q0, w).

which shows that the result is true for 1nw when the result is true for a string of
length n.

Here the result is true for length 0 and for length (n+1) which is implied by the length
n.

Therefore, the given statement is true for all the strings.

Hence, M and M both accept the same string w iff (q ,w) or (q'

0 0,w) contains a
state in F , or F respectively. Therefore,

L(M) = L(M)

For every non-deterministic finite automaton, there exists an equivalent deterministic
infinite automaton which accepts the same language. In this way, two finite automata,
M and M are said to be equivalent if L(M) = L(M).

Example 3: Construct a non-deterministic finite automata accepting the set of all
strings over {a,b} ending in aba. Use it to construct a DFA accepting the same set of
strings.

Solution: Required NFA is the one that accepts strings of the form xaba where
x {a,b}*

32

 Non-Deterministic Finite

Automata

Fig. 7: NFA accepting all the string ended by aba

Transition table of the diagram shown in Figure 7 is given in table 5.
 Table 5

State/ A B
 q0

q1
q2
q3

Q0, q1
-
q3
-

q0
q2
-
-

Now, let us construct its equivalent DFA. [qo] is the initial state in corresponding
DFA so starting the function using [q0] as an initial state, we represent it in table6.

Formally, the DFA is

 A = ({[q0], [q0, q1], [q0, q2], [q0, q1, q3]}, {a,b}, , [q0], {[[q0, q1, q3]})

where is given by the table 6.

Table 6

Diagramatically, DFA is given in figure 8.

Fig. 8: DFA

This example also highlights one of the reasons for studying NFAs. The reason is that
generally, it is easier to construct an NFA that accepts a language than to construct the
corresponding DFA.

Try some exercises to check your understanding:

 33

Ex.3) Construct an NFA accepting {01, 10} and use it to find a DFA accepting the
same.

Finite Automata and
Formal Languages

Ex.4) M = ({q1, q2, q3}, {0,1}, , q1, {q3}) is a NFA, where is given by

 , (q1, 0) = {q2, q3}, (q1, 1) = {q1}
 , (q2, 0) = {q1, q2}, (q2, 1) =
 , (q3, 0) = {q2}, (q3, 1) = {q1, q2}

 construct an equivalent DFA

Ex.5) Construct a transition system which can accept strings over the alphabet a,b, ---

------ containing either cat or rat.
Ex.6) Give examples of machines distinguishing DFA and NFA.

2.4 EQUIVALENCE OF -NFA AND NFA

There exist some transitions graphs when no input is applied. If no input is applied
then the transition systems are associated with a null symbol . Every time we can
find an equivalence in between the systems with -move and without -moves. With
the help of an example, we shall find the equivalence of -NFA and NFA.

Suppose we want to remove -move from the transition shown in figure 9:

Fig. 9: -NFA

In the above transition q0 is an initial state and qf is a final state. For this, we proceed
as follows:
If qi, qj are two states and null string is from qi to qj then :

(a) Duplicate all the edges starting from qi which are starting from qj
(b) If qj is a final state, make qi as a final state and if qi is an initial state, make qj as

an initial state.
Now let us apply these two rules to the transition in figure 9. First of all, removing
in between q1 and qf.

Fig. 10: Removal of one

Now, again apply the same rule to remove the remaining -move.

Fig. 11: After removing both

This transition system is free from and is equivalent to the -NFA.
 34

 Non-Deterministic Finite

Automata 2.5 PUMPING LEMMA

As you know that a language which can be defined by a regular expression is called a
regular language, there are several questions related to regular languages that one can
ask. The important one is: are all languages regular? The simple answer is no. The
languages which are not regular are called non-regular languages. In this section, we
give a basic result called “pumping lemma”. Pumping lemma gives a necessary
condition for an input string to belong to a regular set, and also states a method of
pumping (generating) many input strings from a given strings all of which should be
in the language if the language is regular. As this pumping lemma gives a necessary
(but not sufficient) condition for a language to be regular, we cannot use this lemma to
establish that a given language is regular, but we can use it to prove that a language is
not regular by showing that the language does not obey the lemma.

The pumping lemma uses the pigeonhole principle which states that if p pigeons are
placed into less than p holes, some hole has to have more than one pigeon in it. The
same thing happens in the proof of pumping lemma. The pumping lemma is based on
this fact that in a transition diagram with n states, any string of length greater than or
equal to n must repeat some state.

Pumping lemma (PL):

If L is a regular language, then there exists a constant n such that every string w in L,
of length n or more, can be written as w = xyz, where

(i) y > 0
(ii) xy n
(iii) xyiz is in L, for all i 0 here yi denotes y repeated i times and yo =

Before proving this PL, a question that may have occurred by now is: Are there any
languages that are not accepted by DFA’s?

Consider the language L = {w w=0k1k, where k is a positive integer}.

Proof of (PL): Since we have L is regular, there must be a DFA, say A such that

 L = L(A)

Let A have n states, and a string w of length n in L which is expressed as

 w = a1 a2 - - - - - - aK where k n with general elements ai, aj, for

 , the string w can be written as kji1

w = a1 a2 - - - - - - - ai 1 ai ai+1 ai+2 - - - - aj 1 aj aj+I - - - ak

 and w = xyz

 so x = a1 a2 - - - ai

 y = ai+1, ai+2 - - - aj

 and z = aj+1 , aj+2- - - - ak

Let q0 be the initial state and further let

 35

Finite Automata and
Formal Languages

 q1 = (q0, a1), q2 = (q0, a1 a2)

qi be the state in which A is after reading the first i symbols of w.

Since there are only n different states at least two of q0, q1 - - - qn which are (n+1) in
numbers, must be same say, qi=qj where 0 Then by repeating the loop from
q

.nji
i to qi with label ai+1 - - - - aj zero times once, or more, we get xyiz is accepted by A,

because in case of each of the string xyiz for i = 1,2…, the string when given as an
input to the machine in the initial state q0, reaches the final state qn.
Diagrammatically.

Fig. 12: representation of xyiz

Hence xyiz L (A) i 0.

How to use PL in establishing a given language as non-regular?

We use the PL to show that a language L is not regular through the following
sequence of steps:

Step1: Start by assuming L is regular.

Step2: Suppose corresponding DFA has n states.

Step3: Choose a suitable w such that w L with .nw

Step4: Apply PL to show that there exists i 0 such that xyiz L, where w = xyz

for some strings xyz.

Step5: Thus, we derive a contradiction by picking i, which concludes that assumption

in step 1 is false.

Example 4: Consider L = }.0n0
2n{

Suppose L is regular. Then there exists a constant n satisfying the PL conditions.

Now w = 2n nwandL0
2

Write w = xyz; where 0yandnxy and hence y n

By PL, xyyz L.

Here 2nw

 2nxyz

 2nzyx

 2n.zyyx2 nn ; [as x > 0 and]nxy

 2nxyyz2 nn
36

 Non-Deterministic Finite

Automata 22 nxyyz)n 1(.

(n+1)2 is the next perfect square after n2, therefore,

xyyz is not of square length and is not in L. Since we have derived a contradiction,
which concludes that L is not regular.

Let us try some exercises:

Ex.7) Show that the following languages are not regular

 (i) L1 = {0m1m : m 0}

 (ii) L2 = {0i1j 2K : 0 i < j < K}

(iii) L3 = {ap : p is prime}

(iv) L4 = {ww w {0,1}*}

(v) L6 = {0n1n! n>0}

Ex.8) Give an example of a language which is not regular. Justify your answer.

2.6 CLOSURE PROPERTIES
(Regular Languages and Finite Automata)

Suppose L and M are two regular languages, then if the operations applied to L and M
results regular language, then the property is called closure property. The closure
properties are very useful for regular languages and finite automata. The operations
applied for regular languages produce regular language are union, intersection,
concatenation, complementation, Kleenstar and difference. With the help of closure
properties, we can easily construct the finite automata which accepts the language
which is union, intersection, …, of regular languages.

Before discussing the closure properties, let us define a language of a DFA. Suppose
M = (Q, , , q0, F), and the language accepted by M is L(M) and is defined as L(M)
= {S *(q0,S) F}. That is each string in L(M) is accepted by M. If L = L(M), then
L is regular language. Let us discuss few theorems, showing the closure properties of
regular languages and finite automata.

Theorem2: If L and M are regular languages, then L+M, LM and L* are also regular
languages.

L and M being given to be regular languages can be denoted by some regular
expressions, say, l and m. Then, (l+m) denotes the language L+M. Also, the regular
expression lm denotes the language LM. (l)* denotes the language L*. Therefore, all
three of these sets (i.e., languages) of words are definable by regular expressions, and
hence are themselves regular languages.

Note: If any language can be denoted by a regular expression, then that language is by
definition a regular language. ,

Complements and Intersection

 37

Finite Automata and
Formal Languages Definition: If L is a language over the alphabet , we define its complement, L , to be

the language of all strings of letters from * that are not in L, i.e., L = * L.

Example 5: Let L be the language over the alphabet = {a,b} having all the words
which start with the letter a and no other words over . Then, L is the language of the
all other words that do not have the first letter as a.

Example 6: Suppose L is a language over {a,b} ending with ba, then L is the
language of over {a,b} of all other words not ending with ba.

Theorem 3: If L is a regular language, then L is also a regular languages. In other
words, the set of regular languages is closed under complementation.

Proof : We establish the result by constructing an FA say M , the language L . As L
is given to be regular, therefore there is as FA, say M that recognizes L.

If L = *, then L = , which is, by definition, a regular language.

If L * is a regular language, then there is some FA that accepts the language L.

At least one of the states of the FA is a final state and as L *, at least one of the
states must not be a final state. The required FA has the same set of states, same set of
input symbols, same transition function and same initial state as M. However, if S is
the set of all states of M and F is the set of all final states of M, then set S F of all

non-final states of M serves as set of final states of the proposed FA viz. M .

The fact that M is the FA that recognises the language L , follows from the
following:

Let x L = * L x L

 the string x when given to M as input string in the initial state terminates in a non-
final state of M, i.e., terminates in a state belonging to S F.

 M accepts x

Theorem 4: If L and M are regular languages, then L M is also a regular language.
In other words, the set of regular languages is closed under intersection.

Proof: We can prove this theorem in two ways: One by De Morgan’s Law or by
constructing an appropriate FA. Here the proof with the help of De Morgan’s law is
given, and leave the proof based on construction of an appropriate FA to the students
as an exercise.

For any two general sets L and M, whether regular languages or not, by De Morgan’s
Laws, we have

L M = (L + M).

In view of the fact that complement of a regular language is regular, the languages L

and M are regular languages, given L and M are regular. Further, the fact that the

sum of two regular languages is regular, makes L + M as a regular language. 38

 Non-Deterministic Finite

Automata

Hence, its complement (L + M) = L M, is regular.

 The following discussion, based on processing of two FAS in parallel, helps us in the
construction of an FA for the union of two regular languages.

Example 7: Suppose we take the two machines whose state graphs are given in the
figure below:

 (a) :M1 (b):M2

Fig.13

We can easily verify that the machine (M1) of figure 14 accepts all strings (over {a,
b}) which begin with two b’s. The other machine (M2) in figure 15accepts strings
which end with two b’s. Let’s try to combine them into one machine which accepts
strings which either begin or end with two b’s.

Why not run both machines at the same time on an input? We could keep track of
what state each machine is in, by placing pebbles upon the current states and then
advancing them according to the transition functions of each machine. Both machines
begin in their starting states, as pictured in the state graphs below:

 (a) (b)

Fig. 14: Pebbel on so and qo

With pebbles on s0 and q0, if both machines now read the symbol b on their input
tapes, they move the pebbles to new states and the machines assume the following
configurations:

 39

Finite Automata and
Formal Languages

(a) (b)

Fig. 15: Pebble on s1 and q1

with pebbles on s1 and q1. The pebbles have advanced according to the transition
functions of the machines. Now let’s have them both read as an a. At this point, they
both advance their pebbles to the next state and enter the configurations

(a) (b)

Fig. 16: Pebble on s3 and q0

With this picture in mind, let’s trace the computations of both machines as they
process several input strings. Pay particular attention to the pairs of states the
machines go through. Let our first string be bbabb, which is accepted by both the
machines.

Table7
Input B b a b b
M1’s states
M2’s states

s0 s1 s2 s2 s2 s2
q0 q1 q2 q0 q1 q2

Now, let us look at an input string which neither of the two machines accepts say
babab.

Table 8
Input b a b a b
M1’s states
M2’s states

s0 s1 s3 s3 s3 s3
q0 q1 q0 q1 q0 q1

And finally, we consider the string baabb which will be accepted by M2 but not M1.

Table 9
Input b a a b b
M1’s states
M2’s states

s0 s1 s3 s3 s3 s3
q0 q1 q0 q0 q1 q2

If we imagine a multi-processing finite automaton with two processessors (one for M1
and one for M2), it would probably look just like the pictures given above. Each of its
state is a pair of states, one from each machine, corresponding to the pebble positions.
Then, if a pebble ended up on an accepting state, for either machine (that is, either s2
or q2), our multi-processing finite automaton would accept the string.
The above discussion helps us in seeing the truth of the following statement
intuitively: We construct the required machine by simulating the multi-processing
pebble machine discussed above.

Theorem 5: The class of sets accepted by finite automata is closed under union.

40

 Non-Deterministic Finite

Automata
Proof Sketch : Let M1 = (S, , , s0, F) and M2 = (Q, , , q0, G) be two arbitrary
finite automata. To prove the theorem, we must show that there is another machine
(M3) which accepts every string accepted by M1 or M2 and no other string.

We show that the required machine is M3 = (S Q, , , < s0, q0 >, H) where and H
will be described presently.

The transition function is defined as

 (<si, qi >, a) = < (si, a), (qi, a)>.

It can easily be seen that is a function from S Q to S Q.

A state in M3 is a final state in M3 if and only if either its first component is in F, i.e.,
is a final state of M1 or its second component is in G, i.e., is a final state of M2. In
cross product notation, this is :

H = (F Q) (S G).

This completes the definition of M3. We can easily see that M3 is indeed a finite
automaton because it satisfies the definition of finite automata. We claim it does
accept T(M1) T(M2) since it mimics the operation of our intuitive multi-processing
pebble machine. The remainder of the formal proof (which we shall leave as an
exercise) is merely an introduction on the length of input strings to show that for all
strings x over the alphabet I:

x T(M1) T(M2)iff *(s0,x) F or *(q0,x) G
 iff (<s*

0, q0 > x) H.

Thus, by construction we have shown that the class of sets accepted by finite automata
is closed under union.

By manipulating the notation, we have shown that two finite automata given in figure
13 (a) and (b) can be combined in a special way to prove the desired result, as shown
in figure 17.

Fig. 17: Union of M1 and M2

Note that not all pairs of states are included in the state graph. (For example, <s0, q1>
and <s1, q2> are missing.) This is because it is impossible to get to these states from
<s0, q0>.

This is indeed a complicated machine! But, if we are a bit clever, we might notice
that if the machine enters state s2, q2, then it remains in one of the states (s2, q0), (s2,
q1), (s2, q2) all of which are final states. We may replace all such stages of M3 by a
single state say s2q1, which is also a final state and get a smaller but equivalent
machine as shown in Figure 18:

 41

Finite Automata and
Formal Languages

Fig. 18: Reduced Union Machine

Now check your understanding by the following exercises.

Ex. 9) For each of the following pairs of regular languages, L and M find a regular
 expression and an FA that correspond to L M:

 L M

1. (a+b)*a (a+b)*b

2. (a+ab)* (a+) (a+ba)*a

3. (ab*)* b(a+b)*

4. (a+b)*a (a+b)* aa (a+b)*

5. All strings of even length b(a+b)*
 = (aa+ab+ba+bb)*

2.7 EQUIVALENCE OF REGULAR
EXPRESSION AND FA

As you have seen in Unit 1, all the regular languages can be written as regular
expression and vice-versa. Do you find any relation in regular expression and a
transition system? A regular expression can have , , any input symbol, +, *,
concatenation. Let us find the transition system of these.

Fig. 19: Transition diagram equivalent to

Fig. 20: Transition diagram equivalent to Ø

Fig. 21: Transition diagram equivalent to a

 42

 Non-Deterministic Finite

Automata

Fig. 22: Transition diagram equivalent to R= P + Q

Fig. 23: Transition diagram equivalent to R = PQ

Fig. 24: Transition diagram equivalent to R = P*

Using above equivalence of regular expression and transition systems, we can easily
make use of equivalence of -NFA and NFA and also of NFA and DFA, and finally
we can find the equivalence between a regular expression and FA.

Example 8: Let us try to get the finite automata which is equivalent to regular
expression (a+b)* (ab+ba) (a+b)*.

Step 1: Construction of equivalent -NFA is:

(a+b)* (ab+ba) (a+b)* is

Fig. 25: A Complete regular expression

It is concatenation of (a+b)*, (ab+ba) and (a+b)*,after applying concatenation we get

Fig. 26: After concatenation

Then removing the * from (a+b)* at both places and applying union rule for ab + aa we get

Fig. 27: after removing *and +

Now concatenating ab and ba, we get

 43

Finite Automata and
Formal Languages

Fig. 28: equivalent -NFA

Step 2 : Construction of equivalent NFA, Let us remove every one by one

Fig. 29: Removing

Fig. 30: Removing and Minimizing the state

Fig. 31: Removing

44

 Non-Deterministic Finite

Automata

Fig. 32: Removing

After minimizing the number of states, we get,

Fig. 33: Equivalent NFA

Step 3: Construction of equivalent DFA.

Table 10
States Input

 A b

 [q0]

 [q0,q1]

 [q0, q2]

[q0, q1]

[q0, q1]

[q0, q2, q3]

[q0, q1, q3]

[q0, q1, q3]

[q0, q2]

[q0, q2, q3]

[q0, q2]

[q0, q2, q3]

[q0, q2, q3]

 [qo, q1, q3]

[qo, q2 q3]

Diagrammatically it is shown in Figure 34.

 45

Finite Automata and
Formal Languages

Fig. 34: Equivalent DFA

Now try some exercises.

Ex.10) Find the finite automata equivalent to the following regular expressions:

 (i) ba+(aa+b) a*b

 (ii) b+aa+aba*b.

(iii) (a+b) b (a+b)*

As you have seen that there exists an equivalent NFA with -transitions, NFA without
-transitions and DFA to each regular expression. But if there is some transition

system, then there exists equivalent regular expression. The algorithm we are going
to discuss for this purpose is not restricted to NFA, DFA. This algorithm can be
applied to each transition system to each transition system to find its equivalent
regular expression. We convert a transition system to a regular expression by
reducing the states. These states are reduced by replacing each state one by one with a
corresponding regular expression. The following steps are used:

 If the label is (a, b), then it is replaced by a+b.
 First of all, eliminate all the states which are not initial or final states. If we

replace the state qe from the transition given below,

Fig. 35

then qe is eliminated by writing its corresponding regular expression R1R2

*R3+R4
from qa to qb, as follows:

Fig. 36

Continue the process till only initial and final states remain.

 If initial state is final state and the regular expression is R, such as

Fig. 37

the equivalent regular expression is R* 46

 Non-Deterministic Finite

Automata

 If initial state is not final state and is like,

Fig. 38
 then this can also be written as

Fig. 39

which is the equivalent regular expression. If these are n final states and R1, R2,
R3…Rn are the regular expressions accepted by these states, then the regular
expression accepted by the transition system will be R1+R2+…..+Rn.

Now let us try some examples to understand the algorithm well.

Example 9: Find the regular expression equivalent to the given system.

Fig. 40

There is no state which is neither initial n or final so this can be written as

Fig. 41

The equivalent r.e. is b*a(a+b)*.

Example10: Find a regular expression equivalent to

Fig. 42

 47
Firstly, after eliminating q2, we get

Finite Automata and
Formal Languages

Fig. 43: Equivalent NFA

There are two final states, q0 and q1. The regular expression accepted by q0 is a* and
the regular expression accepted by q1 is a*bb*. Then, the regular expression accepted
by the transition system is

 a*+a*(bb*) = a*(+bb*) (distributive property)

 = a*b* is the equivalent regular expression.

Try some exercise.

Ex.11) Take any regular expression and find the transition system. Using this
transition system, find equivalent regular expression and check your result.

2.8 SUMMARY

In this unit, we have covered the following:

1. Non-deterministic finite automata.

2. There exist, an equivalent DFA for every NFA.
3. Two Automata M and N are said to be equivalent iff L(M) = (L(N).

4. Pumping lemma with its proof.

5. Application of pumping lemma in establishing a given language as non-

regular.

6. Closure properties of regular language and finite automata.

7. Equivalence of regular expression and finite automata. The regular language

can be found from a regular expression as well as finite automata. So, these
two approaches of regular languages are equivalent.

2.9 SOLUTIONS/ANSWERS

Ex.1) is given by

Input

State

 0 1
 q0

q1
q2

q0, q1
-
-

q0
q2
-

48

 Non-Deterministic Finite

Automata
 (q0, 001) = (q0, 01) = (q1, 1) = q2 (Accepting state)

 (q0, 011101) = (q0, 11101)

 = (q0, 1101)

 = (q0, 101)

 = (q0, 01)

 = (q0, 1)

 = q2 (accepting state)

 (q0, 01110) = (q0, 1110)

 = (q0, 110)

 = (q0, 10)

 = (q0, 0)

 = q0 or q1 (Not an accepting state)

 (q0, 010) = (q0, 10)

 = (q0, 0)

 = q0 or q1 (Not an accepting state)

So, strings 001 and 011101 are accepted by the given automata.

Ex.2)

Fig. 44
Ex.3) NFA

Fig. 45

 Transition function is given in the table below:

 49

Finite Automata and
Formal Languages

States 0 1

 q0

q1
q2
q3

q1
-
-
-

q2
q3
-
-

 Equivalent DFA is

States 0 1

[q0]

[q1]

[q2]

[q3]

[q1]

 []

 [q3]

 []

[q2]

[q3]

[]

[]

Ex.4) DFA is

State 0 1
 [q1]
[q2, q3]
[q1, q2]

[q1, q2, q3]

 [q2, q3]
[q1q2]

[q1, q2, q3]
[q1, q2, q3]

 [q1]
[q1, q2]

[q1]
[q1, q2]

Ex.5)

Fig. 46

Ex.7) (i) L1 = {0m1m:m }0

 w = xyz = 0m1m .m2w

 Consider three cases

 Iff y = 0k w = 0m k0k1m

 xyiz = 0m k0.ik1m

 xyiz = 0m+(I-1)k1m

 xyiz L1 as m+(i 1)k .m

Similarly, case II with y = 0k1l and case III with y = 1k can be assumed and
 will not belong to L1.

 So, L1 is not regular 50

 Non-Deterministic Finite

Automata

(ii) Similarly, as part (i)

(iii) L3 {ap:p is prime}

 Suppose y = am, m>0 and w = xyz = ap so pw

 xyiz = xyyi 1z

 xyiz = zy)1i(yx
 = y)1i(w

 = y)1i(p

 = .m)1i(p

 If we choose i 1 a multiple of p, then we get

 xyiz = p+kpm

 = (1+km)p

 which is not a prime number

 so, xyiz L3

(iv) Suppose L is regular, and n be the number of states in automata M.

 ww = xyz with .nxy,0y

 Let us consider ww = 01n01n L4

 and .n)1n(2ww

I case : y has no 0’s, i.e., y = 1k; k 1
II case : y has only one 0.

 Here, y cannot have two 0’s. If so . ut 2ny B .nxyy

In case I, assume i = 0. Then xyiz = xz and is of the form 0 1m 0 1n, where m
= n k < n or of the form 0 1n 0 1m. These both values cannot be written in
form of ww with w {0, 1}* and so xz L. In case II also, take i = 0 then 0
will be removed and xz = 0 1n 1n again this cannot be written in ww form.
Thus, in both the cases we get a contradiction. Therefore, L is not regular.

(v) Left as an exercise.

Ex.8) Any example of a language may be given which is not regular. Use again

pumping lemma to justify

Ex.9) 1.

2. (a*)a
3.
4. (a+b)* aa

 51
 5. (aa+ab+ba+bb)*

52

Finite Automata and
Formal Languages

Ex.10) (i) Equivalent NFA is

Fig. 47
(ii) NFA is

Fig. 48

	2
	Lecture Notes on Theory of Computation Module 1 - Unit 2 by Dr. SK Rath
	UNIT 2 NON-DETERMINISTIC FINITE AUTOMATA
	
	
	
	
	
	Structure Page Nos.

	2.2 NON-DETERMINSTIC FINITE AUTOMATA
	2.3 EQUIVALENCE OF NFA AND DFA
	2.4 EQUIVALENCE OF (-NFA AND NFA
	2.5 PUMPING LEMMA
	
	
	
	
	
	Fig. 12: representation of xyiz

	How to use PL in establishing a given language as non-regular?
	Let us try some exercises:

	CLOSURE PROPERTIES
	(Regular Languages and Finite Automata)
	
	
	Fig. 19: Transition diagram equivalent to (
	
	
	
	Fig. 23: Transition diagram equivalent to R = PQ

	Fig. 25: A Complete regular expression
	Fig. 26: After concatenation
	Fig. 27: after removing *and +
	Fig. 28: equivalent (-NFA
	Fig. 29: Removing (
	Fig. 30: Removing (and Minimizing the state
	Fig. 31: Removing (
	Fig. 33: Equivalent NFA
	Fig. 43: Equivalent NFA

