

BIJU PATNAIK UNIVERSITY OF TECHNOLOGY, ODISHA

Lecture Notes On

QUANTITATIVE TECHNIQUE-II

Prepared by,
Dr. Subhendu Kumar Rath,
BPUT, Odisha.

QUANTITATIVE TECHNIQUE-11

- A stochastic process is a indexed collection of random variables {X_t} = {X₀, X₁, X₂, ...} for describing the behavior of a system operating over some period of time.
- For example:

$$X_0 = 3$$
, $X_1 = 2$, $X_2 = 1$, $X_3 = 0$, $X_4 = 3$, $X_5 = 1$

- An inventory example:
- A camera store stocks a particular model camera.
- D₊ represents the demand for this camera during week t.
- D₊ has a Poisson distribution with a mean of 1.
- X represents the number of cameras on hand at the end of week t. ($X_0 = 3$)
- If there are no cameras in stock on Saturday night, the store orders three cameras.
- { X₊ } is a stochastic process.
- $X_{t+1} = \max\{ 3 D_{t+1}, 0 \}$ if $X_t = 0$ $\max\{ X_t - D_{t+1}, 0 \}$ if $X_t \ge 0$
- A stochastic process {X_t} is a Markov chain if it has Markovian property.
- Markovian property:

P{
$$X_{t+1} = j \mid X_0 = k_0, X_1 = k_1, ..., X_{t-1} = k_{t-1}, X_t = i }$$

= P{ $X_{t+1} = j \mid X_t = i }$

- P{ $X_{t+1} = j \mid X_t = i$ } is called the transition probability.
- Stationary transition probability:
 - If ,for each i and j, $P\{X_{t+1} = j \mid X_t = i\} = P\{X_1 = j \mid X_0 = i\}$, for all t, then the transition probability are said to be stationary.
- Formulating the inventory example:
 - **■** Transition matrix:

$$X_{t+1} = \max\{ 3 - D_{t+1}, 0 \}$$
 if $X_t = 0$

- $\max\{ X_{t} D_{t+1}, 0 \} \quad \text{if } X_{t} \ge 1$ $p_{03} = P\{ D_{t+1} = 0 \} = 0.368$
- $p_{02} = P\{ D_{t+1} = 1 \} = 0.368$
- $p_{00} = P\{ D_{t+1} \ge 3 \} = 0.080$ state 0 1 2

0.080 0.184 0.368 0.368

- 1 0.632 0.368 0.000 0.000
 - 2 0.264 0.368 0.368 0.000
 - 0.080 0.184 0.368 0.368 3
- The state transition diagram:

- n-step transition probability :
 - $p_{ii}^{(n)} = P\{ X_{t+n} = j \mid X_t = i \}$
- n-step transition matrix :

Chapman-Kolmogorove Equation :

$$p_{ij}^{(n)} = \sum_{k=0}^{M} p_{ik}^{(m)} p_{kj}^{(n-m)}$$
 for all i = 0, 1, ..., M, j = 0, 1, ..., M, and any m = 1, 2, ..., n-1, n = m+1, m+2, ...

■ The special cases of m = 1 leads to :

$$p_{ij}^{(n)} = \sum_{k=0}^{M} p_{ik}^{(1)} p_{kj}^{(n-1)}$$
 for all i and j

- Thus the n-step transition probability can be obtained from one-step transition probability recursively.
- Conclusion :

n-step transition matrix for the inventory example :

state 0 1 2 3

0 0.080 0.184 0.368 0.368

P = 1 0.632 0.368 0.000 0.000

2 0.264 0.368 0.368 0.000

3 0.080 0.184 0.368 0.368

state 0 1 2 3

0 0.289 0.286 0.261 0.164

 $\mathbf{p}(4) = 1$ 0.282 0.285 0.268 0.166

2 0.284 0.283 0.263 0.171

3 0.289 0.286 0.261 0.164

■ What is the probability that the camera store will have three cameras on hand 4 weeks after the inventory system began?

on hand 4 weeks after the inventory system began?

P{
$$X_n = j$$
 } = P{ $X_0 = 0$ } $p_{0j}^{(n)}$ + P{ $X_0 = 1$ } $p_{1j}^{(n)}$ + ...

+ P{
$$X_0 = M$$
 } $p_{Mj}^{(1)}$
• P{ $X_4 = 3$ } = P{ $X_0 = 0$ } $p_{03}^{(4)}$ + P{ $X_0 = 1$ } $p_{13}^{(4)}$
+ P{ $X_0 = 2$ } $p_{23}^{(4)}$ + P{ $X_0 = 3$ } $p_{33}^{(4)}$
= (1) $p_{33}^{(4)} = 0.164$

- Long-Run Properties of Markov Chain
 - Steady-State Probability

state 0 1 2 3

0 0.080 0.184 0.368 0.368

 $\mathbf{D} = 1 \quad 0.632 \quad 0.368 \quad 0.000 \quad 0.000$

2 0.264 0.368 0.368 0.000

3 0.080 0.184 0.368 0.368

0.286 0.285 0.264 0.166

0.286 0.285 0.264 0.166

- 3 0.286 0.285 0.264 0.166
- The steady-state probability implies that there is a limiting probability that the system will be in each state j after a large number of transitions, and that this probability is independent of the initial state.
- Not all Markov chains have this property.

state
 0
 1
 2
 3

 0

$$\pi_0$$
 π_1
 π_2
 π_3

 1
 π_0
 π_1
 π_2
 π_3

 2
 π_0
 π_1
 π_2
 π_3

 3
 π_0
 π_1
 π_2
 π_3

Steady-State Equations :

P(8) = 1

Steady-State Equations :
$$\pi_j = \sum_{i=0}^M \pi_i p_{ij}$$

$$\sum_{i=0}^M \pi_j = 1$$
 for i = 0, 1, ..., M

■ which consists of M+2 equations in M+1 unknowns.

- The inventory example :

- $\pi_0 = 0.080\pi_0 + 0.632\pi_1 + 0.264\pi_2 + 0.080\pi_3$,
- $\qquad \pi_1 = 0.184\pi_0 + 0.368\pi_1 + 0.368\pi_2 + 0.184\pi_3 \; ,$
- $\pi_3 = 0.368\pi_0 + + 0.368\pi_3$,
- $\pi_0 = 0.286$, $\pi_1 = 0.285$, $\pi_2 = 0.263$, $\pi_3 = 0.166$

Classification of States of a Markov Chain

- Accessible :
 - State j is accessible from state i if P_{ij}⁽ⁿ⁾ > 0 for some n ≥ 0.
- Communicate :
 - If state j is accessible from state i and state i is accessible from state j, then states i and j are said to communicate.
 - If state i communicates with state j and state j communicates with state k, then state j communicates with state k.
- Class:

- The state may be partitioned into one or more separate classes such that those states that communicate with each other are in the same class.
 - Irreducible :
 - A Markov chain is said to be irreducible if there is only one class, i.e., all the states communicate.
 - A gambling example :
 - Suppose that a player has \$1 and with each play of the game wins \$1 with probability p > 0 or loses \$1 with probability 1-p. The game ends when the player either accumulates \$3 or goes broke.

- Transient state :
 - A state is said to be a transient state if, upon entering this state, the process may never return to this state. Therefore, state I is transient if and

only if there exists a state j (j≠i) that is accessible from state i but not vice versa.

Recurrent state :

A state is said to be a recurrent state if, upon entering this state, the process definitely will return to this state again. Therefore, a state is recurrent if and only if it is not transient.

Absorbing state :

A state is said to be an absorbing state if, upon entering this state, the process never will leave this state again. Therefore, state i is an absorbing state if and only if P_{ii} = 1.

	state 0		1	2	3
	0	1	0	0	0
P =	1	1-p	0	р	0
	2	0	1- p	0	р
	3	0	0	0	1

Period :

The period of state i is defined to be the integer t (t>1) such that $P_{ii}^{(n)} = 0$ for all value of n other than t, 2t, 3t, $P_{11...}^{(k+1)} = 0$, k = 0, 1, 2, ...

Aperiodic :

If there are two consecutive numbers s and s+1 such that the process can be in the state i at

times s and s+1, the state is said to be have period 1 and is called an aperiodic state.

- Ergodic :
 - Recurrent states that are aperiodic are called ergodic states.
 - A Markov chain is said to be ergodic if all its states are ergodic.
- For any irreducible ergodic Markov chain, steady-state probability, $\lim_{n\to\infty} p_{ij}^{(n)}$, exists.
 - An inventory example :
- The process is irreducible and ergodic and therefore, has steady-state probability.

0.080 0.184 0.368 0.368

2 0.264 0.368 0.368 0.000

3 0.080 0.184 0.368 0.368

• First Passage time :

- The first passage time from state i to state j is the number of transitions made by the process in going from state i to state j for the first time.
- Recurrence time :
 - When j = i, the first passage time is just the number of transitions until the process returns to the initial state i and called the recurrence time for state i.
- Example :

$$X_0 = 3, X_1 = 2, X_2 = 1, X_3 = 0, X_4 = 3, X_5 = 1$$

- The first passage time from state 3 to state 1 is 2 weeks.
- The recurrence time for state 3 is 4 weeks.
 - $f_{ij}^{(n)}$ denotes the probability that the first passage time from state i to state j is n.
 - Recursive relationship :

$$f_{ij}^{(n)} = \sum_{k \neq i} p_{ik} f_{kj}^{(n-1)} \qquad \qquad f_{ij}^{(1)} = p_{ij}^{(1)} = p_{ij} \qquad \qquad f_{ij}^{(2)} = \sum_{k \neq i} p_{ik} f_{kj}^{(1)}$$

The inventory example :

•
$$f_{30}^{(1)} = p_{30} = 0.080$$

• $f_{30}^{(2)} = p_{31} f_{10}^{(1)} + p_{32} f_{20}^{(1)} + p_{33} f_{30}^{(1)}$
= $0.184(0.632) + 0.368(0.264) + 0.368(0.080) = 0.243$

- **...** ...
- Sum: $\sum_{n=1}^{\infty} f_{ij}^{(n)} \leq \mathbf{1}$
- Expected first passage time :

- Expected first passage time :
- \blacksquare $\mu_{ij} =$

The inventory example :

$$\mu_{30} = 1 + p_{31}\mu_{10} + p_{32}\mu_{20} + p_{33}\mu_{30}$$

$$\mu_{20} = 1 + p_{21}\mu_{10} + p_{22}\mu_{20} + p_{23}\mu_{30}$$

 μ_{10} = 1.58 weeks, μ_{20} = 2.51 weeks, μ_{30} = 3.50 weeks

- Absorbing states :
 - A state k is called an absorbing state if p_{kk} = 1, so that once the chain visits k it remains there forever.
- An gambling example :
 - Suppose that two players (A and B), each having \$2, agree to keep playing the game and betting \$1 at a time until one player is broke. The probability of A winning a single bet is 1/3.
- The transition matrix form A's point of view

state 0 1 2 3 4 0 0 0 0 1 2/3 0 1/3 0 0 0 2/3 0 1/3 2 3 0 2/3 0 1/3 4 0 0 0 0 1

- Probability of absorption :
 - If k is an absorbing state, and the process starts in state i, the probability of ever going to state k is called the probability of absorption into state k, given the system started in state i.
- The gambling example :

$$f_{20} = 4/5, f_{24} = 1/5$$