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UANTITATIVE TECHNIQUE-11

B A stochastic process is a indexed collection of random variables {Xt} =
{ XO, Xl, Xz, ... } for describing the behavior of a system operating

over some period of time.
For example :
B X, =3, X =2,X =1X,=0,X, =3 X, =1
An inventory example:
A camera store stocks a particular model camera.
Dt represents the demand for this camera during week t.

Dt has a Poisson distribution with a mean of 1.

Xt represents the number of cameras on hand at the end of week t. (

X, =3)

B |If there are no cameras in stock on Saturday night, the store orders
three cameras.
m{ Xt } is a stochastic process.

m X :max{3—Dt+1,O} ith:O

t+1
- i >
max{ Xt Dt+1, 0} if Xt =0
B A stochastic process {Xt} is a Markov chain if it has Markovian

property.
B Markovian property:
BP{X =j|IX =k, X =k,...,X =k ,X =i}
t+1 (0] 0] 1 1 t-1 t-1 t

=P{Xt+1=j|Xt=i}
B P{ Xt+1 =j| Xt =i } is called the transition probability.

B Stationary transition probability:
B If ,for each i and j, P{Xt+1=j | Xt=i}=P{X1=j | Xo=i},

for all t, then the transition probability are said to be stationary.
B Formulating the inventory example:
B Transition matrix:
state 0 1 2 3

0 Pao Por Poz  Poz
P= 1 Pw Pu Pz Piz
2 P P Pzz P2z

3 pw Psi Ps2 Pszz
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m X =max{3—Dt+1,O} ifX =0

t+1
max{ Xt - Dt+1, 0} if Xt =1

.= P{ Dt+1 =03} =0.368

, = P{ Dt+1 =13}=0.368

L= P{ Dt+1 =23}=0.184
o > o

o P{ Dt+1 = 3} =0.080

state O 1 2 3

o 0.080 0.184 0.368 0.368

p
p
P
p

0

0

0

0

p= 1 0.6320.368 0.000 0.000
2 0.264 0.368 0.368 0.000

3 0.080 0.184 0.368 0.368

B The state transition diagram:
0.184

0.368

0.368 0.368

B n-step transition probability :
n

(m . .
. pij _P{Xt+n_J|Xt_|}
B n-step transition matrix :
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state O 1 M

0 Pod™ PV L. Ponf™
Ph) = 1 P Py o PypfV
M PMS,(,'?) PM](D) PM”)

B Chapman-Kolmogorove Equation :

for all i' =0,
() — (m pin-m )0
Z p and any m

B The special cases of m = 1 leads to :
(”) Z p(l) (n-1) forall i and j

B Thus the n-step transmon probability can be obtained from one-step
transition probability recursively.

B Conclusion :
(n) (n-1) (n-2) n
m P =PP = PPP =...=P

B n-step transition matrix for the inventory example :
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state O 1 2 3
o 0.080 0.184 0.368 0.368

pPp= 1 0.6320.368 0.000 0.000

2 0.264 0.368 0.368 0.000

3 0.080 0.184 0.368 0.368
state O 1 2 3

o 0.289 0.286 0.261 0.164

p4) =1 0.282 0.285 0.268 0.166

2 0.284 0.283 0.263 0.171

3 0.289 0.286 0.261 0.164

What is the probability that the camera store will have three cameras

on hand 4 weeks after the inventory system began ?
i Q) @)
P{Xn=J}—P{X0—O}pOj +P{X0—1}p1j + ...

_ Q)
+P{X,=M3}p,
“ “

P{X,=33=P{X =03p +P{X =13}p
_ @ _ ©)
+P{X,=2}p,, *+P{X =3}p,

=(@)p,, =0.164

Long-Run Properties of Markov Chain
B Steady-State Probability

state O 1 2 3
o 0.080 0.184 0.368 0.368

— 1 0.632 0.368 0.000 0.000
2 0.264 0.368 0.368 0.000

3 0.080 0.184 0.368 0.368
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state O 1 2 3
o 0.286 0.285 0.264 0.166

P@) =1 0.286 0.285 0.264 0.166
2 0.286 0.285 0.264 0.166

3 0.286 0.285 0.264 0.166

B The steady-state probability implies that there is a limiting probability
that the system will be in each state j after a large number of
transitions, and that this probability is independent of the initial state.

B Not all Markov chains have this property.

state O 1 2 3
0 7o Ty 2 3
1 7 Ty T 3
2 g Ty L T3
3 mg Ty b T3

B Steady-State Equations :

M
7T = 2 I,7Z'i Pi;
i—0

M
Zﬂ'j =1
j—0

B which consists of M+2 equations in M+1 unknowns.

fori=0,1,..., M
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s Theinventory example:
" T = ToPgo + P10 + TPy + TiP3g
" T = TPy + P12 + TPy + MaPs;,

B T3 =ToPo3z + TPz + TPy + P33,

m 1=my+ T+ + T

s T, =0.080m; + 0.632m,; + 0.264m, + 0.0807,,
u Ttl = 01847{0 + 0368‘5‘1 + 0368‘52 + 0184‘53 ’
m T, =0.368m, + +0.368m, +0.36875,
m T3 =0.368m, + + +0.36875,

] 1:‘:'50""11"'?52"‘753.

s Ty =0.286, my =0.285, My, = 0.263, 7, = 0.166

Classification of States of a
Markov Chain

= Accessible :
= State j is accessible from state i if Pij(n) > 0 for
some n 2 0.
= Communicate :
= If state j is accessible from state | and state i is
accessible from state j, then states i and j are
said to communicate.
= If state i communicates with state j and state j
communicates with state k, then state |
communicates with state k.
= Class :
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s The state may be partitioned into one or more separate
classes such that those states that communicate with
each other are in the same class.

= Irreducible :
= A Markov chain is said to be irreducible if there is
only one class, i.e., all the states communicate.
= A gambling example :
= Suppose that a player has $1 and with each play
of the game wins $1 with probability p > 0 or
loses $1 with probability 1-p. The game ends
when the player either accumulates $3 or goes
broke.

state 0O 1 2 3

2 0 I-p O p

3 0 0 0 1
[
- ¥ ~ ~Z N ~ - ~

( v 2 )Y \

\ J \& S \ /
u B i B B o

= Transient state :

= A state is said to be a transient state if, upon

entering this state, the process may never return
to this state. Therefore, state | is transient if and
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only if there exists a state j (j#i) that is
accessible from state i but not vice versa.
= Recurrent state :
= A state is said to be a recurrent state if, upon
entering this state, the process definitely will
return to this state again. Therefore, a state is
recurrent if and only if it is not transient.
= Absorbing state :
m A state is said to be an absorbing state if, upon entering
this state, the process never will leave this state again.
Therefore, state I is an absorbing state if and only if P. =

1.
state 0O 1 2 3

2 0 I-p O p

30 0 0 1

= Period :
= The period of state i is defined to be the integer t

(t>1) such that P”(n) = 0 for all value of n other

than t, 2t, 3t, ... .
(k+13
= P, =0,k=0,1,2, ...
= Aperiodic :

= If there are two consecutive numbers s and s+1
such that the process can be in the state i at
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times s and s+1, the state is said to be have
period 1 and is called an aperiodic state.
= Ergodic :
= Recurrent states that are aperiodic are called
ergodic states.
= A Markov chain is said to be ergodic if all its
states are ergodic.

s For any irreducible ergodic Markov chain, steady-state
. im p{" .
probability, o~ ,exists.
= An inventory example :
m The process is irreducible and ergodic and therefore,

has steady-state probability.
state 0 1 2 3

o 0.080 0.184 0.368 0.368
p= 1 0.6320.368 0.000 0.000
2 0.264 0.368 0.368 0.000

. 3 0.080 0.184 0.368 0.368
OO
/ \
| )
() () _~
M 5

= First Passage time :
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= The first passage time from state i to state j is
the number of transitions made by the process in
going from state i to state j for the first time.

= Recurrence time :

= When j =, the first passage time is just the
number of transitions until the process returns to
the initial state i and called the recurrence time
for state i.

= Example :
= X, =3, X, =2,X,=1,X,=0,X,=3,X, =1
= The first passage time from state 3 to state 1 is 2
weeks.
s The recurrence time for state 3 is 4 weeks.
£ denotes the probability that the first passage
time from state i to state j is n.

= Recursive relationship :

fij(n) - Z Pic fkﬁn_l) fij(l) = pi(jl) = P fij(Z) = z Pic fkﬁl)
= The inventory example :
€
« f,, =p, =0.080

2 1) (¢H) (1)
- fso = Py flO + P, 1:20 * Pss fso

= 0.184(0.632) + 0.368(0.264) +
0.368(0.080) = 0.243

= EXxpected first passage time :
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= Expected first passage time :

- l""ij =

= The inventory example :
- M30 =1+ p31“10 + p32“20 + p33“30
= My = 1Pyl F Pyyk,g + Poskyg
- M10 =1+ p11“10 + plZHZO + plSHBO
b, = 1.58 weeks, p,, = 2.51 weeks, p,, = 3.50 weeks

= Absorbing states :
= A state k is called an absorbing state if p,, = 1,

so that once the chain visits k it remains there
forever.
= An gambling example :
= Suppose that two players (A and B), each having
$2, agree to keep playing the game and betting
$1 at a time until one player is broke. The
probability of A winning a single bet is 1/3.

= The transition matrix form A’s point of view
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4 0 0 0 0 1

= Probability of absorption :
= If k is an absorbing state, and the process

starts in state i, the probability of ever
going to state k is called the probability of
absorption into state k, given the system
started in state i.

= The gambling example :

f,=4/51,=1/5

24
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