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The Markov chains to be considered in this chapter have the following properties: 
 

1.  A finite number of states. 
2.  Stationary transition probabilities. 

 
We also will assume that we know the initial probabilities P{X0     i} for all i. 

 

 
Formulating the Inventory Example as  a Markov Chain 

 

Returning to the inventory example developed in the preceding section, recall that Xt  is 
the number of cameras in stock at the end of week t (before ordering any more), where 
Xt  represents the state of the system at time t. Given that the current state is Xt     i, the 
expression at the end of Sec. 16.1 indicates that Xt    1  depends only on Dt    1  (the demand 
in week t     1) and Xt. Since Xt   1  is independent of any past history of the inventory sys- 
tem, the stochastic process {Xt} (t     0, 1, . . .) has the Markovian property and so is a 
Markov chain. 

Now consider how to obtain the (one-step) transition probabilities, i.e., the elements 
of the (one-step) transition matrix 

 
State 

0 
1 

P   
2 
3 

 
0 

p00 
p10 

p20 
 
p30 

 
1 

p01 

p11 

p21 

p31 

 
2 

p02 

p12 

p22 

p32 

 
3 

p03 
p13 
p23  
p33 

 

given that Dt    1  has a Poisson distribution with a mean of 1. Thus, 
 

(1)ne    1 
P{Dt    1     n}                 , for n     0, 1, . . . , 

 
so 

 

P{Dt    1     0}     e   1     0.368, 
P{Dt    1     1}     e   1     0.368, 

P{D   2}     1 e   1     0.184, 2 
P{Dt    1     3}     1     P{Dt    1     2}     1     (0.368     0.368     0.184)     0.080. 

 
For the first row of P, we are dealing with a transition from state Xt     0 to some state 

Xt    1. As indicated at the end of Sec. 16.1, 
 

Xt    1     max{3     Dt    1, 0} if Xt     0. 
 

Therefore, for the transition to Xt    1     3 or Xt    1     2 or Xt    1     1, 
 

p03     P{Dt   1     0}     0.368, 
p02     P{Dt   1     1}     0.368, 
p01     P{Dt    1     2}     0.184. 
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0 0.080 0.184 0.368 0.368 
1  

0.632 0.368 0  
2 0.264 0.368 0.368 0  
3 0.080 0.184 0.368 0.368 
 

 
 
 

A transition from Xt     0 to Xt    1     0 implies that the demand for cameras in week t     1 
is 3 or more after 3 cameras are added to the depleted inventory at the beginning of the 
week, so 

 

p00     P{Dt    1     3}     0.080. 
 

For the other rows of P, the formula at the end of Sec. 16.1 for the next state is 
 

Xt    1     max {Xt     Dt    1, 0} if Xt    1     1. 
 

This implies that Xt    1     Xt, so p12     0, p13     0, and p23     0. For the other transitions, 
 

p11     P{Dt    1     0}     0.368, 
p10     P{Dt    1     1)     1     P{Dt    1     0}     0.632, 
p22     P{Dt    1     0}     0.368, 
p21     P{Dt    1     1}     0.368, 
p20     P{Dt    1     2}     1     P{Dt    1     1}     1     (0.368     0.368)     0.264. 

 

For the last row of P, week t     1 begins with 3 cameras in inventory, so the calculations 
for the transition probabilities are exactly the same as for the first row. Consequently, the 
complete transition matrix is 

 

State 0 
 

1 2 3 
 

P      
0  

   
 

The information given by this transition matrix can also be depicted graphically with 
the state transition diagram in Fig. 16.1. The four possible states for the number of cameras 
on hand at the end of a week are represented by the four nodes (circles) in the diagram. The 

 
 
 

FIGURE 16.1 
State  transition diagram for 
the  inventory example for a 
camera store. 
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  

 
 

arrows show the possible transitions from one state to another, or sometimes from a state 
back to itself, when the camera store goes from the end of one week to the end of the next 
week. The number next to each arrow gives the probability of that particular transition oc- 
curring next when the camera store is in the state at the base of the arrow. 

 
 

Additional Examples of Markov Chains 
 

A Stock  Example.   Consider the following model for the value of a stock. At the end 
of a given day, the price is recorded. If the stock has gone up, the probability that it will 
go up tomorrow is 0.7. If the stock has gone down, the probability that it will go up to- 
morrow is only 0.5. This is a Markov chain, where state 0 represents the stock’s going up 
and state 1 represents the stock’s going down. The transition matrix is given by 

 

State 
0 

P   
1 

 

0 
0.7 
0.5 

 

1 
0.3 
0.5 

 
A Second Stock  Example.   Suppose now that the stock market model is changed so 
that the stock’s going up tomorrow depends upon whether it increased today and yester- 
day. In particular, if the stock has increased for the past two days, it will increase tomor- 
row with probability 0.9. If the stock increased today but decreased yesterday, then it will 
increase tomorrow with probability 0.6. If the stock decreased today but increased yes- 
terday, then it will increase tomorrow with probability 0.5. Finally, if the stock decreased 
for the past two days, then it will increase tomorrow with probability 0.3. If we define 
the state as representing whether the stock goes up or down today, the system is no longer 
a Markov chain. However, we can transform the system to a Markov chain by defining 
the states as follows:1 

 

State 0:  The stock increased both today and yesterday. 
State 1:  The stock increased today and decreased yesterday. 
State 2:  The stock decreased today and increased yesterday. 
State 3:  The stock decreased both today and yesterday. 

 

This leads to a four-state Markov chain with the following transition matrix: 
 

State 
0 
1 

P   

 
0 1 

0.9 0 

0.6 0 

 
2 3 

0.1 0    
0.4 0    

2 0 
 

3 0 
0.5 0 
0.3 0 

0.5  
 

0.7  
 

A Gambling Example. Another example involves gambling. Suppose that a player 
has $1 and with each play of the game wins $1 with probability p     0 or loses $1 with 
probability 1     p. The game ends when the player either accumulates $3 or goes broke. 

 
 

1This example demonstrates that Markov chains are able to incorporate arbitrary amounts of history, but at the 
cost of significantly increasing the number of states. 
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State  0 1 2 3 
0  1 0 0 0  

  
2  0 1     p 0 p  
3  0 0 0 1  

 

ij  

ik p 

ij  

pij  p 

pij  p p 

pij  

, 

 
 
 

This game is a Markov chain with the states representing the player’s current holding of 
money, that is, 0, $1, $2, or $3, and with the transition matrix given by 

 
 
 

P        
1 1     p 

 

0 p 0  

 
 

Note that in both the inventory and gambling examples, the numeric labeling of the 
states that the process reaches coincides with the physical expression of the system—i.e., 
actual inventory levels and the player’s holding of money, respectively—whereas the nu- 
meric labeling of the states in the stock examples has no physical significance. 

 
16.3 CHAPMAN-KOLMOGOROV EQUATIONS 

 

Section 16.2 introduced the n-step transition probability p(n). The following Chapman- 
Kolmogorov equations provide a method for computing these n-step transition probabilities: 

 
 

pij  

 
M 

    ik      kj  
(n)    k    0 p(m) p(n    m),  for all i     0, 1, . . . , M, 

j     0, 1, . . . , M, 
and any m     1, 2, . . . , n     1, 

n     m     1, m     2, . . . .1 
 

These equations point out that in going from state i to state j in n steps, the process 
will be in some state k after exactly m (less than n) states. Thus, p(m) (n    m) 

kj is just the 
conditional probability that, given a starting point of state i, the process goes to state k af- 
ter m steps and then to state j in n     m steps. Therefore, summing these conditional prob- 
abilities over all possible k must yield p(n). The special cases of m     1 and m     n     1 
lead to the expressions 

 
 
 
 

and 

 

 
(n)    

 
M 

  
k    0 

 
 
pik 

 

 
(n    1) 
kj 

 
M 
(n)      

 
 

(n    1) 
ik  kj 

k    0
 

  
 

for all states i and j. These expressions enable the n-step transition probabilities to be ob- 
tained from the one-step transition probabilities recursively. This recursive relationship is 
best explained in matrix notation (see Appendix 4). For n     2, these expressions become 

 
(2)    

 
M 

  
k    0 

 
 
pik 

 
 
pkj 

 
 
, for all states i and j, 

 
1These equations also hold in a trivial sense when m     0 or m     n, but m     1, 2, . . . , n     1 are the only in- 
teresting cases. 
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ij  

ij  

 

10 

23 

   

(4) 

  

 
 

where the p(2)
 are the elements of a matrix P(2)

 . Also note that these elements are obtained 
by multiplying the matrix of one-step transition probabilities by itself; i.e., 

 

P(2)     P   P     P2. 
 

In the same manner, the above expressions for p(n)
 

that the matrix of n-step transition probabilities is 
 

P(n)     PP(n    1)     P(n    1)P 
  PPn    1     Pn    1P 
  Pn. 

 
when m     1 and m     n     1 indicate 

 

Thus, the n-step transition probability matrix Pn  can be obtained by computing the nth 
power of the one-step transition matrix P. 

 
n-Step Transition  Matrices for  the Inventory Example 

 

Returning to the inventory example, its one-step transition matrix P obtained in Sec. 16.2 
can now be used to calculate the two-step transition matrix P(2)  as follows: 

 

0.080 
 

0.184 
 

0.368 
 

0.368  
 

0.080 
 

0.184 
 

0.368 
 

0.368  
0.632 

P(2)     P2      
0.264 
 

0.368 
0.368 

0 0 
0.368 0 

  0.632 
  0.264 
   

0.368 
0.368 

0 0  

0.368 0  
 

0.080 
 

0.249 
0.283 

   
0.351 
 
0.249 

0.184 
 
0.286 
0.252 
0.319 
0.286 

0.368 
 
0.300 
0.233 
0.233 
0.300 

0.368  
 
0.165  
0.233   . 
0.097  

 
0.165  

0.080 0.184 0.368 0.368  

 

For example, given that there is one camera left in stock at the end of a week, the proba- 
bility is 0.283 that there will be no cameras in stock 2 weeks later, that is, p(2)     0.283. 
Similarly, given that there are two cameras left in stock at the end of a week, the proba- 
bility is 0.097 that there will be three cameras in stock 2 weeks later, that is, p(2)     0.097. 

The four-step transition matrix can also be obtained as follows: 
 

P(4)     P4     P(2)   P(2) 

0.249 
0.283 

   
0.351 
 
0.249 

 

0.289 
0.282 

   
0.284 
 
0.289 

0.286 
0.252 
0.319 
0.286 
 
0.286 
0.285 
0.283 
0.286 

0.300 
0.233 
0.233 
0.300 
 
0.261 
0.268 
0.263 
0.261 

0.165  
0.233  
0.097  

 
0.165  
 

0.164  
0.166   . 
0.171  

 
0.164  

0.249 
0.283 
0.351  
0.249 

0.286 
0.252 
0.319 
0.286 

0.300 
0.233 
0.233 
0.300 

0.165  
0.233  
0.097  

 
0.165  

 

For example, given that there is one camera left in stock at the end of a week, the prob- 
ability is 0.282 that there will be no cameras in stock 4 weeks later, that is, p10     0.282. 
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23 

ij  n 

0j 1j Mj 

33 

ij  

32 

ii 

 
 
 

Similarly, given that there are two cameras left in stock at the end of a week, the proba- 
bility is 0.171 there will be three cameras in stock 4 weeks later, that is, p(4)     0.171. 

Your OR Courseware includes a routine for calculating P(n)     Pn  for any positive in- 
teger n     99. 

 
Unconditional State Probabilities 

 

Recall that one- or n-step transition probabilities are conditional probabilities; for exam- 
ple, P{Xn     jX0     i}     p(n). If the unconditional probability P{X      j} is desired, it is 
necessary to specify the probability distribution of the initial state, namely, P{X0     i} for 
i     0, 1, . . . , M. Then 

 

P{Xn     j}     P{X0     0} p(n)
 

 

  P{X0     1}p(n)
 

 

        P{X0     M}p(n). 
 

In the inventory example, it was assumed that initially there were 3 units in stock, 
that is, X0     3. Thus, P{X0     0}     P{X0     1}     P{X0     2}     0 and P{X0     3}     1. 
Hence, the (unconditional) probability that there will be three cameras in stock 2 weeks 
after the inventory system began is P{X2     3}     (1)p(2)     0.165. 

 
16.4 CLASSIFICATION OF STATES OF A MARKOV CHAIN 

 

It is evident that the transition probabilities associated with the states play an important 
role in the study of Markov chains. To further describe the properties of Markov chains, 
it is necessary to present some concepts and definitions concerning these states. 

(n) 
State j is said to be accessible from state i if pij    0 for some n     0. (Recall that 

p(n)  is just the conditional probability of being in state j after n steps, starting in state i.) 
Thus, state j being accessible from state i means that it is possible for the system to en- 

(2) 
ter state j eventually when it starts from state i. In the inventory example, pij    0 for all 
i and j, so every state is accessible from every other state. In general, a sufficient condi- 

(n) 
tion for all states to be accessible is that there exists a value of n for which pij  

all i and j. 
  0 for 

In the gambling example given at the end of Sec. 16.2, state 2 is not accessible 
from state 3. This can be deduced from the context of the game (once the player reaches 
state 3, the player never leaves this state), which implies that p(n)     0 for all n     0. 
However, even though state 2 is not accessible from state 3, state 3 is accessible from 
state 2 since, for n     1, the transition matrix given at the end of Sec. 16.2 indicates that 
p23     p     0. 

If state j is accessible from state i and state i is accessible from state j, then states i 
and j are said to communicate. In the inventory example, all states communicate. In the 
gambling example, states 2 and 3 do not. In general, 

1.  Any state communicates with itself (because p(0)
 

 

  P{X0     iX0     i}     1). 
2.  If state i communicates with state j, then state j communicates with state i. 
3.  If state i communicates with state j and state j communicates with state k, then state i 

communicates with state k. 
 

Properties 1 and 2 follow from the definition of states communicating, whereas property 
3 follows from the Chapman-Kolmogorov equations. 
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As a result of these three properties of communication, the states may be partitioned 
into one or more separate classes such that those states that communicate with each other 
are in the same class. (A class may consist of a single state). If there is only one class, 
i.e., all the states communicate, the Markov chain is said to be irreducible. In the inven- 
tory example, the Markov chain is irreducible. In the first stock example in Sec. 16.2, the 
Markov chain is irreducible. The gambling example contains three classes. State 0 forms 
a class, state 3 forms a class, and states 1 and 2 form a class. 

 
Recurrent States and Transient  States 

 
It is often useful to talk about whether a process entering a state will ever return to this 
state. Here is one possibility. 

 
A state is said to be a transient state if, upon entering this state, the process may never 
return to this state again. Therefore, state i is transient if and only if there exists a state j 
( j     i) that is accessible from state i but not vice versa, that is, state i is not accessible 
from state j. 

 

Thus, if state i is transient and the process visits this state, there is a positive probability 
(perhaps even a probability of 1) that the process will later move to state j and so will 
never return to state i. Consequently, a transient state will be visited only a finite number 
of times. 

When starting in state i, another possibility is that the process definitely will return 
to this state. 

 
A state is said to be a recurrent state if, upon entering this state, the process definitely will 
return to this state again. Therefore, a state is recurrent if and only if it is not transient. 

 

Since a recurrent state definitely will be revisited after each visit, it will be visited infi- 
nitely often if the process continues forever. 

If the process enters a certain state and then stays in this state at the next step, this 
is considered a return to this state. Hence, the following kind of state is a special type of 
recurrent state. 

 
A state is said to be an absorbing state if, upon entering this state, the process never will 
leave this state again. Therefore, state i is an absorbing state if and only if pii     1. 

 

We will discuss absorbing states further in Sec. 16.7. 
Recurrence is a class property. That is, all states in a class are either recurrent or tran- 

sient. Furthermore, in a finite-state Markov chain, not all states can be transient. There- 
fore, all states in an irreducible finite-state Markov chain are recurrent. Indeed, one can 
identify an irreducible finite-state Markov chain (and therefore conclude that all states are 
recurrent) by showing that all states of the process communicate. It has already been 
pointed out that a sufficient condition for all states to be accessible (and therefore com- 

(n) 
municate with each other) is that there exists a value of n for which pij  

(2)   0 for all i and 
j. Thus, all states in the inventory example are recurrent, since pij  is positive for all i and 
j. Similarly, the first stock example contains only recurrent states, since pij  is positive for 

(2) 
all i and j. By calculating pij  for all i and j in the second stock example in Sec. 16.2, it 

(2) 
follows that all states are recurrent since pij    0. 
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 

 

 

 

0 

0 

3    

11 

11 

 

0 

1 

0 

0 

0 

0 
0 

0  

 
 

 

 

 
 
 

As another example, suppose that a Markov chain has the following transition matrix: 
State 0 

1 

   
4 
1 

   
2 

P        2  0 
3  0 
4  1 

1 2 3 4 
3 

   
4 
1 

   
2 

0 1 0 0  
1 2 

      
3 3 

0 0 0 0  

Note that state 2 is an absorbing state (and hence a recurrent state) because if the process 
enters state 2 (row 3 of the matrix), it will never leave. State 3 is a transient state because 
if the process is in state 3, there is a positive probability that it will never return. The prob- 
ability is 1 that the process will go from state 3 to state 2 on the first step. Once the process 
is in state 2, it remains in state 2. State 4 also is a transient state because if the process 
starts in state 4, it immediately leaves and can never return. States 0 and 1 are recurrent 
states. To see this, observe from P that if the process starts in either of these states, it can 
never leave these two states. Furthermore, whenever the process moves from one of these 
states to the other one, it always will return to the original state eventually. 

 

Periodicity Properties 
 

Another useful property of Markov chains is periodicities. The period of state i is defined 
(n) 

to be the integer t (t     1) such that pii   0 for all values of n other than t, 2t, 3t, . . . and 
t is the largest integer with this property. In the gambling example (end of Section 16.2), 
starting in state 1, it is possible for the process to enter state 1 only at times 2, 4, . . . , so 
state 1 has period 2. The reason is that the player can break even (be neither winning nor 
losing) only at times 2, 4, . . . , which can be verified by calculating p(n)  for all n and not- 
ing that p(n)     0 for n odd. 

If there are two consecutive numbers s and s     1 such that the process can be in state 
i at times s and s     1, the state is said to have period 1 and is called an aperiodic state. 

Just as recurrence is a class property, it can be shown that periodicity is a class prop- 
erty. That is, if state i in a class has period t, the all states in that class have period t. In 
the gambling example, state 2 also has period 2 because it is in the same class as state 1 
and we noted above that state 1 has period 2. 

In a finite-state Markov chain, recurrent states that are aperiodic are called ergodic 
states. A Markov chain is said to be ergodic if all its states are ergodic states. 

 

16.5 LONG-RUN PROPERTIES OF MARKOV CHAINS 
 

Steady-State Probabilities 
 

In Sec. 16.3 the four-step transition matrix for the inventory example was obtained. It will 
now be instructive to examine the eight-step transition probabilities given by the matrix 

 
 
 
 

P(8)    P8    P4    P4    

State 
0 
1 
2 

3 0 
0.28
6 

0.28
6 

0.28
6  
0.28
6 

1 
0.285 
0.285 
0.285 
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0.285 2 
0.264 
0.264 
0.264 
0.264 

3 
0
.
1
6
6
 
 
0
.
1
6
6
 
 


 
. 0
.
1
6
6
 

 
 

0
.
1
6
6
 
 
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p 

ij  

 
 

Notice the rather remarkable fact that each of the four rows has identical entries. This im- 
plies that the probability of being in state j after 8 weeks is essentially independent of the ini- 
tial level of inventory. In other words, it appears that there is a limiting probability that the 
system will be in each state j after a large number of transitions, and that this probability is 
independent of the initial state. These properties of the long-run behavior of finite-state Markov 
chains do, in fact, hold under relatively general conditions, as summarized below. 

 
For  any  irreducible  ergodic  Markov  chain,  lim 

n→  

 
(n) 
ij  

 
exists  and  is  independent  of  i. 

Furthermore, 
 

lim  p(n) 
n→  

 
   j     0, 

where the   j  uniquely satisfy the following steady-state equations 
 

M 

 j            i pij,  for j     0, 1, . . . , M, 
i    0 

 
M 

   j     1. 
j    0 

 
The    j  are called the steady-state probabilities of the Markov chain. The term steady- 
state probability means that the probability of finding the process in a certain state, say j, 
after a large number of transitions tends to the value    j, independent of the probability 
distribution of the initial state. It is important to note that the steady-state probability does 
not imply that the process settles down into one state. On the contrary, the process con- 
tinues to make transitions from state to state, and at any step n the transition probability 
from state i to state j is still pij. 

The   j can also be interpreted as stationary probabilities (not to be confused with sta- 
tionary transition probabilities) in the following sense. If the initial probability of being in 
state j is given by   j  (that is, P{X0     j}       j) for all j, then the probability of finding the 
process in state j at time n     1, 2, . . . is also given by   j  (that is, P{Xn     j}       j). 

Note that the steady-state equations consist of M     2 equations in M     1 unknowns. 
Because it has a unique solution, at least one equation must be redundant and can, there- 
fore, be deleted. It cannot be the equation 

 
M 

   j     1, 
j    0 

 
because   j     0 for all j will satisfy the other M     1 equations. Furthermore, the solutions 
to the other M     1 steady-state equations have a unique solution up to a multiplicative con- 
stant, and it is the final equation that forces the solution to be a probability distribution. 

Returning to the inventory example, we see that the steady-state equations can be ex- 
pressed as 

 

 0       0 p00        1 p10        2 p20        3 p30, 
 1       0 p01        1 p11        2 p21        3 p31, 
 2       0 p02        1 p12        2 p22        3 p32, 
 3       0 p03        1 p13        2 p23        3 p33, 

1       0     1     2     3. 
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ij  

p 

p 

    

p 

 
 
 

Substituting values for pij  into these equations leads to the equations 
 

 0     0.080  0     0.632  1     0.264  2     0.080  3, 
 1     0.184  0     0.368  1     0.368  2     0.184  3, 
 2     0.368  0    0.368  2     0.368  3, 
 3     0.368  0    0.368  3, 

1      0      1      2      3. 
 

Solving the last four equations simultaneously provides the solution 
 

 0     0.286,  1     0.285,  2     0.263,  3     0.166, 
 

which is essentially the result that appears in matrix P(8). Thus, after many weeks the 
probability of finding zero, one, two, and three cameras in stock tends to 0.286, 0.285, 
0.263, and 0.166, respectively. 

Your OR Courseware includes a routine for solving the steady-state equations to ob- 
tain the steady-state probabilities. 

There are other important results concerning steady-state probabilities. In particular, 
if i and j are recurrent states belonging to different classes, then 

 
p(n)     0, for all n. 

 
This result follows from the definition of a class. 

Similarly, if j is a transient state, then 
 

lim 
n→  

 
(n) 
ij  

 
  0, for all i. 

Thus, the probability of finding the process in a transient state after a large number of 
transitions tends to zero. 

 
 
 

Expected Average Cost  per  Unit  Time 
 

The preceding subsection dealt with finite-state Markov chains whose states were ergodic 
(recurrent and aperiodic). If the requirement that the states be aperiodic is relaxed, then 
the limit 

 
lim 

n→  

 
(n) 
ij  

may not exist. To illustrate this point, consider the two-state transition matrix 
 

State 
0 

P   
1 

0 1 
0 1 

. 1 0 
 

If the process starts in state 0 at time 0, it will be in state 0 at times 2, 4, 6, . . . and in 
(n) (n) 

state 1 at times 1, 3, 5, . . . . Thus, p00     1 if n is even and p00     0 if n is odd, so that 
 

lim 
n→  

 
(n) 
00 
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1 
(k) 

     t    

1 (k) 

t   

  

 
 

does not exist. However, the following limit always exists for an irreducible (finite-state) 
Markov chain: 

 
n 

 
n→         n 
lim      pij     j, k    1 

 
where the   j  satisfy the steady-state equations given in the preceding subsection. 

This result is important in computing the long-run average cost per unit time associated 
with a Markov chain. Suppose that a cost (or other penalty function) C(Xt) is incurred when 
the process is in state Xt at time t, for t     0, 1, 2, . . . . Note that C(Xt) is a random variable 
that takes on any one of the values C(0), C(1), . . . , C(M) and that the function C( ) is in- 
dependent of t. The expected average cost incurred over the first n periods is given by 

 

1   n 

E      C(X ) . n t    1 
 

By using the result that 
 

n 
 

n→       n 
lim      pij     j, k    1 

 
it can be shown that the (long-run) expected average cost per unit time is given by 

 

1   n  M 

lim E            C(Xt)      jC( j). 
t    1 j    0 

 
To illustrate, consider the inventory example introduced in Sec. 16.1, where the so- 

lution for the   j was obtained in the preceding subsection. Suppose the camera store finds 
that a storage charge is being allocated for each camera remaining on the shelf at the end 
of the week. The cost is charged as follows: 

 

  0 if 
 

C(x )       2 if 
  8 if 
 
18 if 

xt     0 
xt     1 
xt     2 
xt     3 

 

The long-run expected average storage cost per week can then be obtained from the pre- 
ceding equation, i.e., 

 

1   n 

lim E            C(Xt)       0.286(0)     0.285(2)     0.263(8)     0.166(18)     5.662. 
t    1 

 
Note that an alternative measure to the (long-run) expected average cost per unit time 

is the (long-run) actual average cost per unit time. It can be shown that this latter mea- 
sure is given by 

 

1   n  M 

lim      C(Xt)      j C( j) 
t    1 j    0 
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t  0 

 
 
 

for essentially all paths of the process. Thus, either measure leads to the same result. These 
results can also be used to interpret the meaning of the   j. To do so, let 

 

C(X )      1 
 
if Xt     j 
if Xt     j. 

 
The (long-run) expected fraction of times the system is in state j is then given by 

 
1   n 

lim E            C(Xt)  
lim 

E(fraction of times system is in state j )       j. 

t    1 n→  
 

Similarly,   j can also be interpreted as the (long-run) actual fraction of times that the sys- 
tem is in state j. 

 
Expected Average Cost  per  Unit  Time  for  Complex Cost  Functions 

 
In the preceding subsection, the cost function was based solely on the state that the process 
is in at time t. In many important problems encountered in practice, the cost may also de- 
pend upon some other random variable. 

For example, in the inventory example of Sec. 16.1, suppose that the costs to be con- 
sidered are the ordering cost and the penalty cost for unsatisfied demand (storage costs 
are so small they will be ignored). It is reasonable to assume that the number of cameras 
ordered to arrive at the beginning of week t depends only upon the state of the process 
Xt    1   (the number of cameras in stock) when the order is placed at the end of week 
t     1. However, the cost of unsatisfied demand in week t will also depend upon the de- 
mand Dt. Therefore, the total cost (ordering cost plus cost of unsatisfied demand) for week 
t is a function of Xt    1  and Dt, that is, C(Xt    1, Dt). 

Under the assumptions of this example, it can be shown that the (long-run) expected 
average cost per unit time is given by 

 
1   n  M 

lim E            C(Xt    1, Dt)     k( j)   j, 
t    1 j    0 

 

where 
 

k( j )     E[C( j, Dt)], 
 

and where this latter (conditional) expectation is taken with respect to the probability dis- 
tribution of the random variable Dt, given the state j. Similarly, the (long-run) actual av- 
erage cost per unit time is given by 

 

1   n  M 

lim      C(Xt    1, Dt)     k( j)  j. 
t    1 j    0 

 

Now let us assign numerical values to the two components of C(Xt   1, Dt) in this ex- 
ample, namely, the ordering cost and the penalty cost for unsatisfied demand. If z     0 
cameras are ordered, the cost incurred is (10     25z) dollars. If no cameras are ordered, 
no ordering cost is incurred. For each unit of unsatisfied demand (lost sales), there is a 
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penalty of $50. Therefore, given the ordering policy described in Sec. 16.1, the cost in 
week t is given by 

 
10     (25)(3)     50 max{Dt     3, 0}  

if Xt    1     0
 

C(Xt    1, Dt)      50 max {D      X  
, 0}  

if X  
  1,  

for t     1, 2, . . . . Hence, 

t  t    1 t    1 

 
C(0, Dt )     85     50 max{Dt     3, 0}, 

so that 

k(0)     E[C(0, Dt )]     85     50E(max{Dt     3, 0}) 
  85     50[PD(4)     2PD(5)     3PD(6)         ], 

 

where PD(i) is the probability that the demand equals i, as given by a Poisson distribu- 
tion with a mean of 1, so that PD(i) becomes negligible for i larger than about 6. Since 
PD(4)     0.015, PD(5)     0.003, and PD(6)     0.001, we obtain k(0)     86.2. Also using 
PD(2)     0.184 and PD(3)     0.061, similar calculations lead to the results 

 

k(1)     E[C(1, Dt)]     50E(max{Dt     1, 0}) 
  50[PD(2)     2PD(3)     3PD(4)         ] 
  18.4, 

k(2)     E[C(2, Dt)]     50E(max{Dt     2, 0}) 
  50[PD(3)     2PD(4)     3PD(5)         ] 
  5.2, 

 
and 

 
 
k(3)     E[C(3, Dt)]     50E(max{Dt     3, 0}) 

  50[PD(4)     2PD(5)     3PD(6)         ] 
  1.2. 

 

Thus, the (long-run) expected average cost per week is given by 
 

3 

  k( j)  j     86.2(0.286)     18.4(0.285)     5.2(0.263)     1.2(0.166)     $31.46. 
j    0 

 
This is the cost associated with the particular ordering policy described in Sec. 16.1. 

The cost of other ordering policies can be evaluated in a similar way to identify the pol- 
icy that minimizes the expected average cost per week. 

The results of this subsection were presented only in terms of the inventory example. 
However, the (nonnumerical) results still hold for other problems as long as the follow- 
ing conditions are satisfied: 

 
1.  {Xt} is an irreducible (finite-state) Markov chain. 
2.  Associated with this Markov chain is a sequence of random variables {Dt} which are 

independent and identically distributed. 
3.  For a fixed m     0,    1,    2, . . . , a cost C(Xt, Dt    m) is incurred at time t, for t     0, 1, 

2, . . . . 
4.  The sequence X0, X1, X2, . . . , Xt  must be independent of Dt    m. 
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f ij  

f ij  

f , 

f . 

 
 
 

In particular, if these conditions are satisfied, then 
 

1   n  M 

lim E            C(Xt, Dt    m)     k( j)  j, 
 

where 

t    1 j    0 

 
k( j)     E[C( j, Dt    m)], 

 

and where this latter conditional expectation is taken with respect to the probability dis- 
tribution of the random variable Dt, given the state j. Furthermore, 

 
1   n  M 

lim      C(Xt, Dt    m)     k( j)  j 
t    1 j    0 

 
for essentially all paths of the process. 

 

16.6 FIRST PASSAGE TIMES 
 

Section 16.3 dealt with finding n-step transition probabilities from state i to state j. It is 
often desirable to also make probability statements about the number of transitions made 
by the process in going from state i to state j for the first time. This length of time is called 
the first passage time in going from state i to state j. When j     i, this first passage time 
is just the number of transitions until the process returns to the initial state i. In this case, 
the first passage time is called the recurrence time for state i. 

To illustrate these definitions, reconsider the inventory example introduced in Sec. 
16.1, where Xt  is the number of cameras on hand at the end of week t, where we start 
with X0     3. Suppose that it turns out that 

 

X0     3, X1     2, X2     1, X3     0, X4     3, X5     1. 
 

In this case, the first passage time in going from state 3 to state 1 is 2 weeks, the first 
passage time in going from state 3 to state 0 is 3 weeks, and the recurrence time for state 
3 is 4 weeks. 

In general, the first passage times are random variables. The probability distributions 
associated with them depend upon the transition probabilities of the process. In particu- 

(n) 
lar, let f ij denote the probability that the first passage time from state i to j is equal to n. 
For n     1, this first passage time is n if the first transition is from state i to some state 
k (k     j) and then the first passage time from state k to state j is n     1. Therefore, these 
probabilities satisfy the following recursive relationships: 

(1)     p(1)     p ,
 

f ij  
 

(2)    
 
 

(n)    

ij  
 

  
k    j 
 

  
k    j 

 
 
pik 
 
 
pik 

ij  
 

(1) 
kj 

 
 

(n    1) 
kj 

 
Thus, the probability of a first passage time from state i to state j in n steps can be com- 
puted recursively from the one-step transition probabilities. 
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ij  

  f ij  

 
        nf ij  (n) 

  f ij  

 
 

In the inventory example, the probability distribution of the first passage time in go- 
ing from state 3 to state 0 is obtained from these recursive relationships as follows: 

(1)     p
 
  0.080,

 
f 30  30 

(2)     p
 

f (1)     p
 

f (1)     p
 

f (1) f 30 31    10 32    20 33    30 
  0.184(0.632)     0.368(0.264)     0.368(0.080)     0.243, 

 

 
(1) 

where the p3k  and f k0      pk0  are obtained from the (one-step) transition matrix given in 
Sec. 16.2. 

For fixed i and j, the f (n) are nonnegative numbers such that 
 

  
(n)     1. 

n    1 
 

Unfortunately, this sum may be strictly less than 1, which implies that a process initially 
(n) 

in state i may never reach state j. When the sum does equal 1, f ij  (for n     1, 2, . . .) can 
be considered as a probability distribution for the random variable, the first passage time. 

(n) 
Although obtaining f ij  for all n may be tedious, it is relatively simple to obtain the 

expected first passage time from state i to state j. Denote this expectation by   ij, which 
is defined by 

 
 (n)

 

    if     f ij      1 
 

ij   
 
 

 
  

(n)  if 

n    1 
 
  

  
 
 
f ij      1. 

 
 

Whenever 

 n    1 n    1 

 
  

(n)     1, 
n    1 

 

 ij  uniquely satisfies the equation 
 

 ij     1          pik  kj. 
k    j 

 

This equation recognizes that the first transition from state i can be to either state j or to 
some other state k. If it is to state j, the first passage time is 1. Given that the first tran- 
sition is to some state k (k     j) instead, which occurs with probability pik, the conditional 
expected first passage time from state i to state j is 1       kj. Combining these facts, and 
summing over all the possibilities for the first transition, leads directly to this equation. 

For the inventory example, these equations for the   i j can be used to compute the ex- 
pected time until the cameras are out of stock, given that the process is started when three 
cameras are available. This expected time is just the expected first passage time   30. Since 
all the states are recurrent, the system of equations leads to the expressions 

 

 30     1     p31   10     p32   20     p33   30, 
 20     1     p21   10     p22   20     p23   30, 
 10     1     p11   10     p12   20     p13   30, 
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ii    

 
 
 

or 
 

 30     1     0.184  10     0.368  20     0.368  30, 
 20     1     0.368  10     0.368  20, 
 10     1     0.368  10. 

 

The simultaneous solution to this system of equations is 
 

 10      1.58 weeks, 
 20      2.51 weeks, 
 30      3.50 weeks, 

 

so that the expected time until the cameras are out of stock is 3.50 weeks. Thus, in mak- 
ing these calculations for   30, we also obtain   20  and   10. 

For the case of   ij  where j     i,    ii  is the expected number of transitions until the 
process returns to the initial state i, and so is called the expected recurrence time for 
state i. After obtaining the steady-state probabilities (  0,   1, . . . ,   M) as described in the 
preceding section, these expected recurrence times can be calculated immediately as 

 

       1 , for i     0, 1, . . . , M.  i 
 

Thus, for the inventory example, where  0    0.286,  1    0.285,  2    0.263, and  3    
0.166, the corresponding expected recurrence times are 

 
1 1 

 00               3.50 weeks,  22               3.80 weeks,  0   2 

1 1 
 11               3.51 weeks,  33               6.02 weeks.  1   3 

 
16.7 ABSORBING STATES 

 
It was pointed out in Sec. 16.4 that a state k is called an absorbing state if pkk     1, so that 
once the chain visits k it remains there forever. If k is an absorbing state, and the process 
starts in state i, the probability of ever going to state k is called the probability of absorp- 
tion into state k, given that the system started in state i. This probability is denoted by fik. 

When there are two or more absorbing states in a Markov chain, and it is evident that 
the process will be absorbed into one of these states, it is desirable to find these probabilities 
of absorption. These probabilities can be obtained by solving a system of linear equations 
that considers all the possibilities for the first transition and then, given the first transition, 
considers the conditional probability of absorption into state k. In particular, if the state k is 
an absorbing state, then the set of absorption probabilities fik satisfies the system of equations 

 
M 

fik          pij fjk,  for i     0, 1, . . . , M, 
j    0 

 
subject to the conditions 

 
fkk     1, 
fik     0, if state i is recurrent and i     k. 
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 
3 

0 
   

5 20    

5 24    

0 

3 

0 

0 
0 

0 

0  

   3 

   

 
 

Absorption probabilities are important in random walks. A random walk is a Markov 
chain with the property that if the system is in a state i, then in a single transition the sys- 
tem either remains at i or moves to one of the two states immediately adjacent to i. For 
example, a random walk often is used as a model for situations involving gambling. 

To illustrate, consider a gambling example similar to that presented in Sec. 16.2. How- 
ever, suppose now that two players (A and B), each having $2, agree to keep playing the 
game and betting $1 at a time until one player is broke. The probability of A winning a 

1 2 
single bet is   , so B wins the bet with probability   . The number of dollars that player A 

3 3 
has before each bet (0, 1, 2, 3, or 4) provides the states of a Markov chain with transition 
matrix 

 
State 

0 
1 

P        2 
3 
4 

 
0 1 

 1 0 
2 

   
 2 
 0   
 
 
 0 0 

 
2 3 4 
0 0 0  
1 

   
3  

1 0  . 
2 1  
3 3  
0 0 1  

 

Starting from state 2, the probability of absorption into state 0 (A losing all her money) 
can be obtained from the preceding system of equations as f   1, and the probability of 
A winning $4 (B going broke) is given by f        4. 

There are many other situations where absorbing states play an important role. Consider 
a department store that classifies the balance of a customer’s bill as fully paid (state 0), 1 to 
30 days in arrears (state 1), 31 to 60 days in arrears (state 2), or bad debt (state 3). The ac- 
counts are checked monthly to determine the state of each customer. In general, credit is not 
extended and customers are expected to pay their bills within 30 days. Occasionally, cus- 
tomers pay only portions of their bill. If this occurs when the balance is within 30 days in 
arrears (state 1), the store views the customer as remaining in state 1. If this occurs when the 
balance is between 31 and 60 days in arrears, the store views the customer as moving to state 
1 (1 to 30 days in arrears). Customers that are more than 60 days in arrears are put into the 
bad-debt category (state 3), and then bills are sent to a collection agency. After examining 
data over the past several years on the month by month progression of individual customers 
from state to state, the store has developed the following transition matrix:1 

 
1Customers who are fully paid (in state 0) and then subsequently fall into arrears on new purchases are viewed 
as “new” customers who start in state 1. 

 
 

State 
State 

 
0:  Fully  Paid 

1:  1 to 30 Days 
in  Arrears 

2:  31 to 60 Days 
in  Arrears 

 
3:  Bad  Debt 

0: fully paid 
1: 1 to 30 days 
in arrears 

2: 31 to 60 days 
in arrears 

3: bad  debt 

1 
0.7 

 
0.5 

 
0 

0 
0.2 

 
0.1 

 
0 

0 
0.1 

 
0.2 

 
0 

0 
0 

 
0.2 

 
1 
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Although each customer ends up in state 0 or 3, the store is interested in determining the 
probability that a customer will end up as a bad debt given that the account belongs to 
the 1 to 30 days in arrears state, and similarly, given that the account belongs to the 31 
to 60 days in arrears state. 

To obtain this information, the set of equations presented at the beginning of this section 
must be solved to obtain f13 and f23. By substituting, the following two equations are obtained: 

f13     p10 f03     p11 f13     p12 f23     p13 f33, 
f23     p20 f03     p21 f13     p22 f23     p23 f33. 

Noting that f03     0 and f33     1, we now have two equations in two unknowns, namely, 

(1     p11) f13     p13     p12 f23, 
(1     p22) f23     p23     p21 f13. 

Substituting the values from the transition matrix leads to 
 

0.8f13     0.1 f23, 
0.8f23     0.2     0.1 f13, 

and the solution is 
 

f13     0.032, 
f23     0.254. 

Thus, approximately 3 percent of the customers whose accounts are 1 to 30 days in ar- 
rears end up as bad debts, whereas about 25 percent of the customers whose accounts are 
31 to 60 days in arrears end up as bad debts. 

 

16.8 CONTINUOUS TIME MARKOV CHAINS 
 

In all the previous sections, we assumed that the time parameter t was discrete (that is, 
t     0, 1, 2, . . .). Such an assumption is suitable for many problems, but there are certain 
cases (such as for some queueing models considered in the next chapter) where a con- 
tinuous time parameter (call it t ) is required, because the evolution of the process is be- 
ing observed continuously over time. The definition of a Markov chain given in Sec. 16.2 
also extends to such continuous processes. This section focuses on describing these “con- 
tinuous time Markov chains” and their properties. 

 
Formulation 

 
As before, we label the possible states of the system as 0, 1, . . . , M. Starting at time 0 
and letting the time parameter t  run continuously for t      0, we let the random variable 
X(t ) be the state of the system at time t . Thus, X(t ) will take on one of its possible 
(M     1) values over some interval, 0     t      t1, then will jump to another value over the 
next interval, t1     t      t2, etc., where these transit points (t1, t2, . . .) are random points 
in time (not necessarily integer). 

Now consider the three points in time (1) t      r (where r     0), (2) t      s (where 
s     r), and (3) t      s     t (where t     0), interpreted as follows: 

 

t      r    is a past time, 
t      s    is the current time, 
t      s     t    is t time units into the future. 
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  0 

 
 

Therefore, the state of the system now has been observed at times t      s and t      r. La- 
bel these states as 

 

X(s)     i and X(r)     x(r). 
 

Given this information, it now would be natural to seek the probability distribution of the 
state of the system at time t      s     t. In other words, what is 

P{X(s     t)     jX(s)     i and X(r)     x(r)}, for j     0, 1, . . . , M ? 
 

Deriving this conditional probability often is very difficult. However, this task is con- 
siderably simplified if the stochastic process involved possesses the following key property. 

 
A continuous time stochastic process {X(t ); t      0} has the Markovian property if 

 

P{X(t     s)     jX(s)     i and X(r)     x(r)}     P{X(t     s)     jX(s)     i}, 

for all i, j     0, 1, . . . , M and for all r     0, s     r, and t     0. 

Note that P{X(t     s)     jX(s)     i} is a transition probability, just like the transi- 
tion probabilities for discrete time Markov chains considered in the preceding sections, 
where the only difference is that t now need not be an integer. 

 
If the transition probabilities are independent of s, so that 

 

P{X(t     s)     jX(s)     i}     P{X(t)     jX(0)     i} 
 

for all s     0, they are called stationary transition probabilities. 
 

To simplify notation, we shall denote these stationary transition probabilities by 
 

pij(t)     P{X(t)     jX(0)     i}, 

where pij(t) is referred to as the continuous time transition probability function. We 
assume that 

 
1 lim pij (t)   

t→0 

 

if i     j 
if i     j. 

 

Now we are ready to define the continuous time Markov chains to be considered in 
this section. 

 
A continuous time stochastic process {X(t ); t      0} is a continuous time Markov chain 
if it has the Markovian property. 

 

We shall restrict our consideration to continuous time Markov chains with the following 
properties: 

 

1.  A finite number of states. 
2.  Stationary transition probabilities. 

 
Some Key Random Variables 

 
In the analysis of continuous time Markov chains, one key set of random variables is the 
following. 

 

Each time the process enters state i, the amount of time it spends in that state before mov- 
ing to a different state is a random variable Ti, where i     0, 1, . . . , M. 
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Suppose that the process enters state i at time t      s. Then, for any fixed amount of time 
t     0, note that Ti     t if and only if X(t )     i for all t  over the interval s      t       s     t. 
Therefore, the Markovian property (with stationary transition probabilities) implies that 

 

P{Ti     t     sTi     s}     P{Ti     t}. 
 

This is a rather unusual property for a probability distribution to possess. It says that the 
probability distribution of the remaining time until the process transits out of a given state 
always is the same, regardless of how much time the process has already spent in that 
state. In effect, the random variable is memoryless; the process forgets its history. There 
is only one (continuous) probability distribution that possesses this property—the expo- 
nential distribution. The exponential distribution has a single parameter, call it q, where 
the mean is 1/q and the cumulative distribution function is 

P{Ti     t}     1     e   qt,  for t     0. 
 

(We shall describe the properties of the exponential distribution in detail in Sec. 17.4.) 
This result leads to an equivalent way of describing a continuous time Markov chain: 

 

1.  The random variable Ti  has an exponential distribution with a mean of 1/qi. 
2.  When leaving state i, the process moves to a state j with probability pij, where the pij  

satisfy the conditions 

pij     0 for all i, 

and 
 

M 

  pij     1 for all i. 
j    0 

 
3.  The next state visited after state i is independent of the time spent in state i. 

 
Just as the one-step transition probabilities played a major role in describing discrete 

time Markov chains, the analogous role for a continuous time Markov chain is played by 
the transition intensities. 

 
The transition intensities are 

 
d 1     pii(t) qi            pii(0)     lim             , for i     0, 1, 2, . . . , M, dt 

 
and 

 
d 

t→0  t 
 
 

pij(t) qij         pij(0)     lim               qi pij,  for all j     i, dt t→0  t 
 

where pij (t) is the continuous time transition probability function introduced at the be- 
ginning of the section and pij  is the probability described in property 2 of the preceding 
paragraph. Furthermore, qi  as defined here turns out to still be the parameter of the ex- 
ponential distribution for Ti  as well (see property 1 of the preceding paragraph). 

 
The intuitive interpretation of the qi  and qij  is that they are transition rates. In par- 

ticular, qi  is the transition rate out of state i in the sense that qi  is the expected number 
of times that the process leaves state i per unit of time spent in state i. (Thus, qi  is the 
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reciprocal of the expected time that the process spends in state i per visit to state i; that 
is, qi     1/E[Ti].) Similarly, qij  is the transition rate from state i to state j in the sense that 
qij  is the expected number of times that the process transits from state i to state j per unit 
of time spent in state i. Thus, 

 
qi          
qij. 

j    i 
 

Just as qi is the parameter of the exponential distribution for Ti, each qij is the param- 
eter of an exponential distribution for a related random variable described below. 

 
Each time the process enters state i, the amount of time it will spend in state i before a 
transition to state j occurs (if a transition to some other state does not occur first) is a ran- 
dom variable Tij, where i, j     0, 1, . . . , M and j     i. The Tij  are independent random 
variables, where each Tij  has an exponential distribution with parameter qij, so E[Tij]   
1/qij. The time spent in state i until a transition occurs (Ti) is the minimum (over j     i) of 
the Tij. When the transition occurs, the probability that it is to state j is pij     qij /qi. 

 
 

Steady-State Probabilities 
 

Just as the transition probabilities for a discrete time Markov chain satisfy the Chapman- 
Kolmogorov equations, the continuous time transition probability function also satisfies these 
equations. Therefore, for any states i and j and nonnegative numbers t and s (0     s     t), 

 
M 

pij(t)           pik (s)pkj (t     s). 
k    1 

 

A pair of states i and j are said to communicate if there are times t1  and t2  such that 
pij (t1)     0 and pji(t2)     0. All states that communicate are said to form a class. If all 
states form a single class, i.e., if the Markov chain is irreducible (hereafter assumed), then 

 

pij (t)     0, for all t     0 and all states i and j. 

Furthermore, 

lim pij (t)       j 
t→  

always exists and is independent of the initial state of the Markov chain, for j     0, 1, . . . , 
M. These limiting probabilities are commonly referred to as the steady-state probabilities 
(or stationary probabilities) of the Markov chain. 

The   j  satisfy the equations 
 

M 

 j            i pij (t), for j     0, 1, . . . , M and every t     0. 
i    0 

 
However, the following steady-state equations provide a more useful system of equa- 
tions for solving for the steady-state probabilities: 

 
 j qj            i qij,  for j     0, 1, . . . , M. 

i    j 
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2 

1 
2 

02 20    

 
 
 

and 
 

M 

   j     1. 
j    0 

 
The steady-state equation for state j has an intuitive interpretation. The left-hand side 

(  j qj ) is the rate at which the process leaves state j, since   j  is the (steady-state) proba- 
bility that the process is in state j and qj  is the transition rate out of state j given that the 
process is in state j. Similarly, each term on the right-hand side (  i qij ) is the rate at which 
the process enters state j from state i, since qij  is the transition rate from state i to state j 
given that the process is in state i. By summing over all i     j, the entire right-hand side 
then gives the rate at which the process enters state j from any other state. The overall 
equation thereby states that the rate at which the process leaves state j must equal the rate 
at which the process enters state j. Thus, this equation is analogous to the conservation of 
flow equations encountered in many engineering and science courses. 

Because each of the first M     1 steady-state equations requires that two rates be in 
balance (equal), these equations sometimes are called the balance equations. 

 
Example. A certain shop has two identical machines that are operated continuously ex- 
cept when they are broken down. Because they break down fairly frequently, the top- 
priority assignment for a full-time maintenance person is to repair them whenever needed. 

The time required to repair a machine has an exponential distribution with a mean of 
    day. Once the repair of a machine is completed, the time until the next breakdown of 
that machine has an exponential distribution with a mean of 1 day. These distributions are 
independent. 

Define the random variable X(t ) as 
 

X(t )     number of machines broken down at time t , 
 

so the possible values of X(t ) are 0, 1, 2. Therefore, by letting the time parameter t  run 
continuously from time 0, the continuous time stochastic process {X(t ); t      0} gives the 
evolution of the number of machines broken down. 

Because both the repair time and the time until a breakdown have exponential distri- 
butions, {X(t ); t      0} is a continuous time Markov chain1  with states 0, 1, 2. Conse- 
quently, we can use the steady-state equations given in the preceding subsection to find 
the steady-state probability distribution of the number of machines broken down. To do 
this, we need to determine all the transition rates, i.e., the qi  and qij  for i, j     0, 1, 2. 

The state (number of machines broken down) increases by 1 when a breakdown oc- 
curs and decreases by 1 when a repair occurs. Since both breakdowns and repairs occur 
one at a time, q   0 and q        0. The expected repair time is 1 day, so the rate at which 
repairs are completed (when any machines are broken down) is 2 per day, which implies 
that q21     2 and q10     2. Similarly, the expected time until a particular operational ma- 
chine breaks down is 1 day, so the rate at which it breaks down (when operational) is 1 

 
 

1Proving this fact requires the use of two properties of the exponential distribution discussed in Sec. 17.4 (lack 
of memory and the minimum of exponentials is exponential), since these properties imply that the Tij  random 
variables introduced earlier do indeed have exponential distributions. 
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q01     2 q12     1 
 
 
 

FIGURE 16.2 
Rate diagram for the 
example of a continuous 
time  Markov chain. 

State: 0 1 2 
 
 
q10     2 q21     2 

 
 
 
 

per day, which implies that q12     1. During times when both machines are operational, 
breakdowns occur at the rate of 1     1     2 per day, so q01     2. 

These transition rates are summarized in the rate diagram shown in Fig. 16.2. These 
rates now can be used to calculate the total transition rate out of each state. 

 

q0     q01     2. 
q1     q10     q12     3. 
q2     q21     2. 

 

Plugging all the rates into the steady-state equations given in the preceding subsection 
then yields 

 

Balance equation for state 0: 2  0     2  1 
Balance equation for state 1: 3  1     2  0     2  2 
Balance equation for state 2: 2  2       1 
Probabilities sum to 1:  0       1       2     1 

Any one of the balance equations (say, the second) can be deleted as redundant, and the 
simultaneous solution of the remaining equations gives the steady-state distribution as 

 

2   2   1 
(  0,    1,    2)         ,    ,      . 5   5   5 

 
Thus, in the long run, both machines will be broken down simultaneously 20 percent of 
the time, and one machine will be broken down another 40 percent of the time. 

 
 

The next chapter (on queueing theory) features many more examples of continuous 
time Markov chains. In fact, most of the basic models of queueing theory fall into this 
category. The current example actually fits one of these models (the finite calling popu- 
lation variation of the M/M/s model included in Sec. 17.6). 
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LEARNING AIDS FOR THIS CHAPTER IN YOUR OR COURSEWARE 
 

Automatic Routines in  OR Courseware: 
 

Enter Transition Matrix 
Chapman-Kolmogorov Equations 
Steady-State Probabilities 

 

See Appendix 1 for documentation of the software. 
 
 
 

PROBLEMS 
 

The symbol to the left of some of the problems (or their parts) has 
the following meaning. 

 
C:  Use the computer with the corresponding automatic routines 

listed above (or other equivalent routines) to solve the problem. 
 

An asterisk on the problem number indicates that at least a partial 
answer is given in the back of the book. 

 
16.2-1.  Assume that the probability of rain tomorrow is 0.5 if it is 
raining today, and assume that the probability of its being clear (no 
rain) tomorrow is 0.9 if it is clear today. Also assume that these 
probabilities do not change if information is also provided about 
the weather before today. 
(a)  Explain why the stated assumptions imply that the Markovian 

property holds for the evolution of the weather. 
(b) Formulate the evolution of the weather as a Markov chain by 

defining its states and giving its (one-step) transition matrix. 
 

16.2-2.  Consider the second version of the stock market model 
presented as an example in Sec. 16.2. Whether the stock goes up 
tomorrow depends upon whether it increased today and yesterday. 
If the stock increased today and yesterday, it will increase tomor- 
row with probability   1. If the stock increased today and decreased 
yesterday, it will increase tomorrow with probability   2. If the stock 
decreased today and increased yesterday, it will increase tomorrow 
with probability   3. Finally, if the stock decreased today and yes- 
terday, it will increase tomorrow with probability   4. 
(a)  Construct the (one-step) transition matrix of the Markov chain. 

(b) Explain why the states used for this Markov chain cause the 
mathematical definition of the Markovian property to hold even 
though what happens in the future (tomorrow) depends upon 
what happened in the past (yesterday) as well as the present 
(today). 

 
16.2-3.  Reconsider Prob. 16.2-2. Suppose now that whether or not 
the stock goes up tomorrow depends upon whether it increased to- 
day, yesterday, and the day before yesterday. Can this problem be 
formulated as a Markov chain? If so, what are the possible states? 
Explain why these states give the process the Markovian property 
whereas the states in Prob. 16.2-2 do not. 
 
16.3-1.  Reconsider Prob. 16.2-1. 
C  (a) Use the routine Chapman-Kolmogorov Equations in your 

OR Courseware to find the n-step transition matrix P(n)   for 
n     2, 5, 10, 20. 

(b) The probability that it will rain today is 0.5. Use the results 
from part (a) to determine the probability that it will rain n 
days from now, for n     2, 5, 10, 20. 

C  (c) Use  the  routine  Steady-State  Probabilities  in  your  OR 
Courseware to determine the steady-state probabilities of the 
state of the weather. Describe how the probabilities in the 
n-step transition matrices obtained in part (a) compare to 
these steady-state probabilities as n grows large. 

 
16.3-2.  Suppose that a communications network transmits binary 
digits, 0 or 1, where each digit is transmitted 10 times in succes- 
sion. During each transmission, the probability is 0.99 that the digit 



CHAPTER 16  PROBLEMS 829  

By Dr.S.K.Rath, BPUT 

 

  

0 

1 
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 

 
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3 

 

0 

0 

 
1 

0 

1 0 

0 
0 

0 
 3 

3 

0 
1 

3 

3 

0 

0 

   

   

0 0 

0 

0 

0 

0 

0  

0  

0 
0 

0 0 1 
5 

  
 

0 

 
 

entered will be transmitted accurately. In other words, the proba- 
bility is 0.01 that the digit being transmitted will be recorded with 
the opposite value at the end of the transmission. For each trans- 

16.4-2.  Given each of the following (one-step) transition matrices 
of a Markov chain, determine the classes of the Markov chain and 
whether they are recurrent. 

mission after the first one, the digit entered for transmission is the 
one that was recorded at the end of the preceding transmission. If 
X0  denotes the binary digit entering the system, X1  the binary digit

 

State 
0 

0    1    2    3 
1  1  1 

         
3  3  3 

1  1  1 

recorded after the first transmission, X2 the binary digit recorded 
1 

(a)  P   
2 

     3 
1 

   

        3  3  
1  1 

      
after the second transmission, . . . , then {Xn} is a Markov chain. 3  3  3  

 1  1  1 
(a) Construct the (one-step) transition matrix.       

3  3 

         0  

C  (b) Use your OR Courseware to find the 10-step transition ma- 
trix P(10).  Use this result to identify the probability that a 
digit entering the network will be recorded accurately after 
the last transmission. 

 
 
 
(b)  P   

State 
0 
1 

0 
 
0 
 1 
    

1    2 
0    1  
1   
    

 2  2   
C  (c) Suppose that the network is redesigned to improve the prob- 

ability that a single transmission will be accurate from 0.99 
2 0 1    0  

to 0.999. Repeat part (b) to find the new probability that a 
digit entering the network will be recorded accurately after 
the last transmission. 

16.4-3.  Given  the  following  (one-step)  transition  matrix  of  a 
Markov chain, determine the classes of the Markov chain and 
whether they are recurrent. 

 
16.3-3.*  A particle moves on a circle through points that have been 
marked 0, 1, 2, 3, 4 (in a clockwise order). The particle starts at 
point 0. At each step it has probability 0.5 of moving one point 
clockwise (0 follows 4) and 0.5 of moving one point counter- 
clockwise. Let Xn   (n     0) denote its location on the circle after 

State 0 
1 

   
4 
3 

   

 4 
P      2    

 
 

4  

1 2 
3 

   
4 
1 

   
4 
1  1 

      
3  3 

0 0 
0

 

3    4 
0    0  
0    0  

 
0    0  
3  1  
4  4  
1     

 

step n. { Xn} is a Markov chain. 0 0 4  4 

(a)  Construct the (one-step) transition matrix. 
C  (b) Use your OR Courseware to determine the n-step transition 

matrix P(n)   for n     5, 10, 20, 40, 80. 

 

16.4-4.  Determine the period of each of the states in the Markov 
chain that has the following (one-step) transition matrix. 

C  (c) Use your OR Courseware to determine the steady-state prob- 
abilities of the state of the Markov chain. Describe how the 

State 
0 

0    1 

0   0 
2    3    4    5 

2  1 

      
3  3 

probabilities in the n-step transition matrices obtained in part 
(b) compare to these steady-state probabilities as n grows 
large. 

 
16.4-1.*  Given the following (one-step) transition matrices of a 
Markov chain, determine the classes of the Markov chain and 
whether they are recurrent. 

1 0 
 

P        
2 1 
3 0 

 
4 0 
5 0 

0    1    0 
0    0    0 
1 
   
4 

0    1    0 
1 
   
2 

0    0  
 0  

3 
   
4 

 0  
1 
   
2 

State 
0 

0    1 

0   0 
2    3 
1 2 
      
3 3 

16.4-5.  Consider the Markov chain that has the following (one- 
step) transition matrix. 

1 
(a)  P   

2 
 
 
0   1 
 

 
 

0    0   

State 
0 

0    1    2 
4 
   
5 

1 1 

3    4 
   0  
1 

 

 
 
 

(b)  
P   

3 
State 

0 

1 0   1    0    
0  

0    1    
2    3 

1   0    0    0  
1 1 
      
2 2 
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 
0 

 

0 

 
  

 

0 

0 

0 
 

 

4 

1 
0  

    2 0  
   2 

3 0 0 

1 
P        2 

3 
4 

       4 2 
1 
   
2 

 0    
0 

1 1 
      
3 3 

   0  
1  2  
      
10 5 


 
 

1 
   
3 

2 0    1 1
 

1 1 
      
2 2 

 

(a)  Determine the classes of this Markov chain and, for each class, 
determine whether it is recurrent or transient. 
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j    

 
 
 

(b) For each of the classes identified in part (b), determine the pe- 
riod of the states in that class. 

 
16.5-1.  Reconsider Prob. 16.2-1. Suppose now that the given prob- 
abilities, 0.5 and 0.9, are replaced by arbitrary values,    and   , re- 
spectively. Solve for the steady-state probabilities of the state of 
the weather in terms of    and   . 

 
16.5-2.  A transition matrix P is said to be doubly stochastic if the 
sum over each column equals 1; that is, 

 
M 

  pij     1, for all j. 
i    0 

 
If such a chain is irreducible, aperiodic, and consists of M     1 
states, show that 

 

     1 , for j     0, 1, . . . , M. M     1 
 

16.5-3.  Reconsider Prob. 16.3-3. Use the results given in Prob. 
16.5-2 to find the steady-state probabilities for this Markov chain. 
Then find what happens to these steady-state probabilities if, at 
each step, the probability of moving one point clockwise changes 
to 0.9 and the probability of moving one point counterclockwise 
changes to 0.1. 

 
C  16.5-4.  The leading brewery on the West Coast (labeled A) has 
hired an OR analyst to analyze its market position. It is particu- 
larly concerned about its major competitor (labeled B). The ana- 
lyst believes that brand switching can be modeled as a Markov 
chain using three states, with states A and B representing customers 
drinking beer produced from the aforementioned breweries and 
state C representing all other brands. Data are taken monthly, and 
the analyst has constructed the following (one-step) transition ma- 

ies. The hospital proposes a policy of receiving 1 pint at each de- 
livery and using the oldest blood first. If more blood is required than 
is on hand, an expensive emergency delivery is made. Blood is dis- 
carded if it is still on the shelf after 21 days. Denote the state of the 
system as the number of pints on hand just after a delivery. Thus, 
because of the discarding policy, the largest possible state is 7. 
(a) Construct the (one-step) transition matrix for this Markov 

chain. 
C  (b) Find the steady-state probabilities of the state of the Markov 

chain. 
(c)  Use the results from part (b) to find the steady-state probabil- 

ity that a pint of blood will need to be discarded during a 3- 
day period. (Hint: Because the oldest blood is used first, a pint 
reaches 21 days only if the state was 7 and then D     0.) 

(d) Use the results from part (b) to find the steady-state probabil- 
ity that an emergency delivery will be needed during the 3-day 
period between regular deliveries. 

 
16.5-6.  A soap company specializes in a luxury type of bath soap. 
The sales of this soap fluctuate between two levels—“Low” and 
“High”—depending upon two factors: (1) whether they advertise, 
and (2) the advertising and marketing of new products being done 
by competitors. The second factor is out of the company’s control, 
but it is trying to determine what its own advertising policy should 
be. For example, the marketing manager’s proposal is to advertise 
when sales are low but not to advertise when sales are high. Ad- 
vertising in any quarter of a year has its primary impact on sales 
in the following quarter. Therefore, at the beginning of each quar- 
ter, the needed information is available to forecast accurately 
whether sales will be low or high that quarter and to decide whether 
to advertise that quarter. 

The cost of advertising is $1 million for each quarter of a year 
in which it is done. When advertising is done during a quarter, the 

1 3 
probability of having high sales the next quarter is     or   , depend-

 
trix from past data. 2 4 

ing upon whether the current quarter’s sales are low or high. These 
1 1

 
A B C probabilities go down to     or     when advertising is not done during 

4 2 
 

A 0.7  0.2  0.1 
B 0.2  0.75  0.05 
C 0.1  0.1  0.8 

 
What are the steady-state market shares for the two major breweries? 

 
16.5-5.  Consider the following blood inventory problem facing a 
hospital. There is need for a rare blood type, namely, type AB, Rh 
negative blood. The demand D (in pints) over any 3-day period is 
given by 

 

P{D     0}     0.4, P{D     1}     0.3, 
P{D     2}     0.2, and P{D     3}     0.1. 

 
Note  that  the  expected  demand  is  1  pint,  since  E(D)   0.3(1)   
0.2(2)     0.1(3)     1. Suppose that there are 3 days between deliver- 

the current quarter. The company’s quarterly profits (excluding ad- 
vertising costs) are $4 million when sales are high but only $2 mil- 
lion when sales are low. (Hereafter, use units of millions of dollars.) 
(a)  Construct the (one-step) transition matrix for each of the fol- 

lowing advertising strategies: (i) never advertise, (ii) always 
advertise, (iii) follow the marketing manager’s proposal. 

(b) Determine the steady-state probabilities manually for each of 
the three cases in part (a). 

(c)  Find the long-run expected average profit (including a deduc- 
tion for advertising costs) per quarter for each of the three ad- 
vertising strategies in part (a). Which of these strategies is best 
according to this measure of performance? 

 
C  16.5-7.  In the last subsection of Sec. 16.5, the (long-run) ex- 
pected average cost per week (based on just ordering costs and un- 



CHAPTER 16  PROBLEMS 831  

By Dr.S.K.Rath, BPUT 
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1 

1 

 
 

satisfied demand costs) is calculated for the inventory example of 
Sec. 16.1. Suppose now that the ordering policy is changed to the 
following. Whenever the number of cameras on hand at the end of 
the week is 0 or 1, an order is placed that will bring this number 
up to 3. Otherwise, no order is placed. 

Recalculate the (long-run) expected average cost per week un- 
der this new inventory policy. 

 
16.5-8.*  Consider the inventory example introduced in Sec. 16.1, 
but with the following change in the ordering policy. If the num- 
ber of cameras on hand at the end of each week is 0 or 1, two ad- 
ditional cameras will be ordered. Otherwise, no ordering will take 
place. Assume that the storage costs are the same as given in the 
second subsection of Sec. 16.5. 
C  (a) Find the steady-state probabilities of the state of this Markov 

chain. 
(b) Find the long-run expected average storage cost per week. 

 
16.5-9.  Consider the following inventory policy for a certain prod- 
uct. If the demand during a period exceeds the number of items 
available, this unsatisfied demand is backlogged; i.e., it is filled 
when the next order is received. Let Zn  (n     0, 1, . . . ) denote the 
amount of inventory on hand minus the number of units backlogged 
before ordering at the end of period n (Z0     0). If Zn  is zero or 
positive, no orders are backlogged. If Zn  is negative, then    Zn  rep- 

16.5-10.  An important unit consists of two components placed in 
parallel. The unit performs satisfactorily if one of the two compo- 
nents is operating. Therefore, only one component is operated at a 
time, but both components are kept operational (capable of being 
operated) as often as possible by repairing them as needed. An op- 
erating component breaks down in a given period with probability 
0.2. When this occurs, the parallel component takes over, if it is 
operational, at the beginning of the next period. Only one compo- 
nent can be repaired at a time. The repair of a component starts at 
the beginning of the first available period and is completed at the 
end of the next period. Let Xt  be a vector consisting of two ele- 
ments U and V, where U represents the number of components that 
are operational at the end of period t and V represents the number 
of periods of repair that have been completed on components that 
are not yet operational. Thus, V     0 if U     2 or if U     1 and the 
repair of the nonoperational component is just getting under way. 
Because a repair takes two periods, V     1 if U     0 (since then one 
nonoperational component is waiting to begin repair while the other 
one is entering its second period of repair) or if U     1 and the non- 
operational component is entering its second period of repair. 
Therefore, the state space consists of the four states (2, 0), (1, 0), 
(0, 1), and (1, 1). Denote these four states by 0, 1, 2, 3, respec- 
tively. {Xt} (t     0, 1, . . .) is a Markov chain (assume that X0     0) 
with the (one-step) transition matrix 

resents the number of backlogged units and no inventory is on hand. 
At the end of period n, if Zn     1, an order is placed for 2m units, 

State 0 1 2 3 

where m is the smallest integer such that Z   2m     1. Orders are 0 0.8 0.2    0 0    
n 

filled immediately. 
 

P      0 0.2 
 

0.8  
. 

Let D1, D2, . . . , be the demand for a product in periods 1, 
2, . . . , respectively. Assume that the Dn  are independent and iden- 
tically distributed random variables taking on the values, 0, 1, 2, 

2 0 
 

3 0.8 
1 0 0    

 
0.2    0 0    

3, 4, each with probability   . Let X denote the amount of stock on C  (a) What is the probability that the unit will be inoperable (be- 
5 n 

hand after ordering at the end of period n (where X0     2), so that cause both components are down) after n periods, for n   
2, 5, 10, 20? 

Xn    1     Dn     2m
 

if Xn    1     Dn     1
 

Xn       (n     1, 2, . . .), C  (b) What are the steady-state probabilities of the state of this 
Xn    1     Dn if Xn    1     Dn     1 Markov chain? 

 

when {Xn} (n     0, 1, . . . ) is a Markov chain. It has only two 
states, 1 and 2, because the only time that ordering will take place 
is when Zn     0,    1,    2, or    3, in which case 2, 2, 4, and 4 units 
are ordered, respectively, leaving Xn     2, 1, 2, 1, respectively. 
(a)  Construct the (one-step) transition matrix. 
(b) Use the steady-state equations to solve manually for the steady- 

state probabilities. 
(c)  Now use the result given in Prob. 16.5-2 to find the steady- 

state probabilities. 
(d) Suppose that the ordering cost is given by (2     2m) if an or- 

der is placed and zero otherwise. The holding cost per period 
is Zn  if Zn     0 and zero otherwise. The shortage cost per pe- 
riod is    4Zn  if Zn     0 and zero otherwise. Find the (long-run) 
expected average cost per unit time. 

(c)  If it costs $30,000 per period when the unit is inoperable (both 
components down) and zero otherwise, what is the (long-run) 
expected average cost per period? 

16.6-1.  A computer is inspected at the end of every hour. It is 
found to be either working (up) or failed (down). If the computer 
is found to be up, the probability of its remaining up for the next 
hour is 0.90. If it is down, the computer is repaired, which may re- 
quire more than 1 hour. Whenever the computer is down (regard- 
less of how long it has been down), the probability of its still be- 
ing down 1 hour later is 0.35. 
(a) Construct the (one-step) transition matrix for this Markov 

chain. 
(b) Use the approach described in Sec. 16.6 to find the   i j  (the ex- 

pected first passage time from state i to state j) for all i and j. 
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16.6-2.  A manufacturer has a machine that, when operational at 
the beginning of a day, has a probability of 0.1 of breaking down 
sometime during the day. When this happens, the repair is done 
the next day and completed at the end of that day. 
(a)  Formulate the evolution of the status of the machine as a Markov 

chain by identifying three possible states at the end of each day, 
and then constructing the (one-step) transition matrix. 

(b) Use the approach described in Sec. 16.6 to find the   ij  (the ex- 
pected first passage time from state i to state j) for all i and j. 
Use these results to identify the expected number of full days 
that the machine will remain operational before the next break- 
down after a repair is completed. 

(c)  Now suppose that the machine already has gone 20 full days 
without a breakdown since the last repair was completed. How 
does the expected number of full days hereafter that the ma- 
chine will remain operational before the next breakdown com- 
pare with the corresponding result from part (b) when the re- 
pair had just been completed? Explain. 

 
16.6-3.  Reconsider Prob. 16.6-2. Now suppose that the manufac- 
turer keeps a spare machine that only is used when the primary 
machine is being repaired. During a repair day, the spare machine 
has a probability of 0.1 of breaking down, in which case it is re- 
paired the next day. Denote the state of the system by (x, y), where 
x and y, respectively, take on the values 1 or 0 depending upon 

C  (d) Find the steady-state probabilities of the state of this Markov 
chain. 

(e)  Assuming that the store pays a storage cost for each camera 
remaining on the shelf at the end of the week according to the 
function C(0)     0, C(1)     $2, and C(2)     $8, find the long- 
run expected average storage cost per week. 

 
16.6-5.  A production process contains a machine that deteriorates 
rapidly in both quality and output under heavy usage, so that it is 
inspected at the end of each day. Immediately after inspection, the 
condition of the machine is noted and classified into one of four 
possible states: 
 

 
State  Condition 
 

0  Good  as new 
1  Operable—minimum deterioration 
2  Operable—major deterioration 
3  Inoperable and  replaced by a good-as-new machine 

 
 
The process can be modeled as a Markov chain with its (one-step) 
transition matrix P given by 
 
 
State 0 1 2 3 

7 1 1
 

whether the primary machine (x) and the spare machine (y) are op- 
erational (value of 1) or not operational (value of 0) at the end of 
the day. [Hint: Note that (0, 0) is not a possible state.] 

0 0          
8  16  16 

1  0  3  1  1 
         

 
1 1 

chain. 2 0 0       
(b) Find the expected recurrence time for the state (1, 0). 2  2 

 
16.6-4.  Consider the inventory example presented in Sec. 16.1 ex- 
cept that demand now has the following probability distribution: 

3  1  0  0  0 
 
 
C  (a) Find the steady-state probabilities. 
(b) If the costs of being in states 0, 1, 2, 3, are 0, $1,000, $3,000, 

1 1 
P{D     0}        , P{D     2}        , and $6,000, respectively, what is the long-run expected aver- 

4 4 age cost per day? 
1 (c)  Find the expected recurrence time for state 0 (i.e., the expected 

P{D     1}        , P{D     3)     0. 2 
 

The ordering policy now is changed to ordering just 2 cameras at 
the end of the week if none are in stock. As before, no order is 
placed if there are any cameras in stock. Assume that there is one 
camera in stock at the time (the end of a week) the policy is in- 
stituted. 
(a)  Construct the (one-step) transition matrix. 
C  (b) Find the probability distribution of the state of this Markov 

chain n weeks after the new inventory policy is instituted, 

 
length of time a machine can be used before it must be re- 
placed). 

 
16.7-1.  Consider the following gambler’s ruin problem. A gam- 
bler bets $1 on each play of a game. Each time, he has a proba- 
bility p of winning and probability q     1     p of losing the dollar 
bet. He will continue to play until he goes broke or nets a fortune 
of T dollars. Let Xn  denote the number of dollars possessed by the 
gambler after the nth play of the game. Then 

X      1 with probability p 
for n     2, 5, 10. Xn    1         n 

for 0     Xn     T, 

(c)  Find the   ij   (the expected first passage time from state i to 
state j) for all i and j. 

Xn     1 Xn    1     Xn, with probability q     
1     p 
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for Xn     0 or T. 
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with a mean of   day. 

2    

 
 

{Xn} is a Markov chain. The gambler starts with X0  dollars, where 
X0  is a positive integer less than T. 
(a)  Construct the (one-step) transition matrix of the Markov chain. 
(b) Find the classes of the Markov chain. 
(c)  Let T     3 and p     0.3. Using the notation of Sec. 16.7, find 

f10, f1T, f20, f2T. 
(d) Let T     3 and p     0.7. Find f10, f1T, f20, f2T. 

 
16.7-2.  A video cassette recorder manufacturer is so certain of its 
quality control that it is offering a complete replacement warranty 
if a recorder fails within 2 years. Based upon compiled data, the 
company has noted that only 1 percent of its recorders fail during 
the first year, whereas 5 percent of the recorders that survive the 
first year will fail during the second year. The warranty does not 
cover replacement recorders. 
(a)  Formulate the evolution of the status of a recorder as a Markov 

chain whose states include two absorption states that involve 
needing to honor the warranty or having the recorder survive 
the warranty period. Then construct the (one-step) transition 
matrix. 

(b) Use the approach described in Sec. 16.7 to find the probabil- 
ity that the manufacturer will have to honor the warranty. 

16.8-1.  Reconsider the example presented at the end of Sec. 16.8. 
Suppose now that a third machine, identical to the first two, has 
been added to the shop. The one maintenance person still must 
maintain all the machines. 
(a)  Develop the rate diagram for this Markov chain. 
(b) Construct the steady-state equations. 
(c)  Solve these equations for the steady-state probabilities. 
 
16.8-2.  The state of a particular continuous time Markov chain is 
defined as the number of jobs currently at a certain work center, 
where a maximum of three jobs are allowed. Jobs arrive individu- 
ally. Whenever fewer than three jobs are present, the time until the 
next arrival has an exponential distribution with a mean of 1  day. 
Jobs are processed at the work center one at a time and then leave 
immediately. Processing times have an exponential distribution 

1 

   
4 

(a)  Construct the rate diagram for this Markov chain. 
(b) Write the steady-state equations. 
(c)  Solve these equations for the steady-state probabilities. 
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Queueing Theory 
 
 
 
 
 
 
 

Queues (waiting lines) are a part of everyday life. We all wait in queues to buy a movie 
ticket, make a bank deposit, pay for groceries, mail a package, obtain food in a cafeteria, 
start a ride in an amusement park, etc. We have become accustomed to considerable 
amounts of waiting, but still get annoyed by unusually long waits. 

However, having to wait is not just a petty personal annoyance. The amount of time 
that a nation’s populace wastes by waiting in queues is a major factor in both the quality 
of life there and the efficiency of the nation’s economy. For example, before its dissolu- 
tion, the U.S.S.R. was notorious for the tremendously long queues that its citizens fre- 
quently had to endure just to purchase basic necessities. Even in the United States today, 
it has been estimated that Americans spend 37,000,000,000 hours per year waiting in 
queues. If this time could be spent productively instead, it would amount to nearly 20 mil- 
lion person-years of useful work each year! 

Even this staggering figure does not tell the whole story of the impact of causing 
excessive waiting. Great inefficiencies also occur because of other kinds of waiting than 
people standing in line. For example, making machines wait to be repaired may result in 
lost production. Vehicles (including ships and trucks) that need to wait to be unloaded 
may delay subsequent shipments. Airplanes waiting to take off or land may disrupt later 
travel schedules. Delays in telecommunication transmissions due to saturated lines may 
cause data glitches. Causing manufacturing jobs to wait to be performed may disrupt 
subsequent production. Delaying service jobs beyond their due dates may result in lost 
future business. 

Queueing theory is the study of waiting in all these various guises. It uses queueing 
models to represent the various types of queueing systems (systems that involve queues 
of some kind) that arise in practice. Formulas for each model indicate how the corre- 
sponding queueing system should perform, including the average amount of waiting that 
will occur, under a variety of circumstances. 

Therefore, these queueing models are very helpful for determining how to operate a 
queueing system in the most effective way. Providing too much service capacity to oper- 
ate the system involves excessive costs. But not providing enough service capacity results 
in excessive waiting and all its unfortunate consequences. The models enable finding an 
appropriate balance between the cost of service and the amount of waiting. 
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After some general discussion, this chapter presents most of the more elementary 
queueing models and their basic results. Chapter 18 discusses how the information pro- 
vided by queueing theory can be used to design queueing systems that minimize the to- 
tal cost of service and waiting. 

 
17.1 PROTOTYPE EXAMPLE 

 

The emergency room of COUNTY HOSPITAL provides quick medical care for emergency 
cases brought to the hospital by ambulance or private automobile. At any hour there is al- 
ways one doctor on duty in the emergency room. However, because of a growing tendency 
for emergency cases to use these facilities rather than go to a private physician, the hospi- 
tal has been experiencing a continuing increase in the number of emergency room visits 
each year. As a result, it has become quite common for patients arriving during peak us- 
age hours (the early evening) to have to wait until it is their turn to be treated by the doc- 
tor. Therefore, a proposal has been made that a second doctor should be assigned to the 
emergency room during these hours, so that two emergency cases can be treated simulta- 
neously. The hospital’s management engineer has been assigned to study this question.1 

The management engineer began by gathering the relevant historical data and then 
projecting these data into the next year. Recognizing that the emergency room is a queue- 
ing system, she applied several alternative queueing theory models to predict the waiting 
characteristics of the system with one doctor and with two doctors, as you will see in the 
latter sections of this chapter (see Tables 17.2, 17.3, and 17.4). 

 
17.2 BASIC STRUCTURE OF QUEUEING MODELS 

 
The  Basic  Queueing Process 

 
The basic process assumed by most queueing models is the following. Customers requir- 
ing service are generated over time by an input source. These customers enter the queue- 
ing system and join a queue. At certain times, a member of the queue is selected for ser- 
vice by some rule known as the queue discipline. The required service is then performed 
for the customer by the service mechanism, after which the customer leaves the queueing 
system. This process is depicted in Fig. 17.1. 

Many alternative assumptions can be made about the various elements of the queue- 
ing process; they are discussed next. 

 
Input Source (Calling Population) 

 
One characteristic of the input source is its size. The size is the total number of customers 
that might require service from time to time, i.e., the total number of distinct potential 
customers. This population from which arrivals come is referred to as the calling popu- 
lation. The size may be assumed to be either infinite or finite (so that the input source 
also is said to be either unlimited or limited ). Because the calculations are far easier for 
the infinite case, this assumption often is made even when the actual size is some rela- 

 
1For one actual case study of this kind, see W. Blaker Bolling, “Queueing Model of a Hospital Emergency 
Room,” Industrial Engineering, September 1972, pp. 26–31. 


	Introduction To Operations Research
	Introduction To Operations Research

