(I) Predictive Analytics

1. Linear Methods for Regression and Classification: Overview of supervised learning, Linear regression models and least squares, Multiple regression, Multiple outputs, Subset selection, Ridge regression, Lasso regression, Linear Discriminant Analysis, Logistic regression, Perceptron learning algorithm.

2. Model Assessment and Selection: Bias, Variance, and model complexity, Bias-variance trade off, Optimism of the training error rate, Estimate of in-sample prediction error, Effective number of parameters, Bayesian approach and BIC, Cross-validation, Bootstrap methods, conditional or expected test error.

3. Additive Models, Trees, and Boosting: Generalized additive models, Regression and classification trees, Boosting methods-exponential loss and AdaBoost, Numerical Optimization via gradient boosting, Examples (Spam data, California housing, New Zealand fish, Demographic data)

4. Neural Networks (NN), Support Vector Machines (SVM), and K-nearest Neighbor: Fitting neural networks, Back propagation, Issues in training NN, SVM for classification, Reproducing Kernels, SVM for regression, K-nearest –Neighbour classifiers (Image Scene Classification)

5. Unsupervised Learning and Random forests: Association rules, Cluster analysis, Principal Components, Random forests and analysis.

(II) Inferential Statistics and Prescriptive analytics

6. Assessing Performance of a classification Algorithm (t-test, McNemar’s test, Paired t-test, paired F-test), Analysis of Variance, Creating data for analytics through designed experiments.

Introduction to big data and Challenges for big data analytics.

(III) Lab work

7. Implementation of following methods using R or Matlab (One of the class tests with a weightage of 15 marks be used to examine these implementations): Simple and multiple linear regression, Logistic regression, Linear discriminant analysis, Ridge regression, Cross-validation and boot strap, Fitting classification and regression trees, K-nearest neighbours, Principal component analysis, K-means clustering.

Recommended Texts:
2. (For unit 7 only) - G. James, D. Witten, T. Hastie, R. Tibshirani- *An introduction to statistical learning with applications in R*, Springer, 2013. (2.3,3.6.1-3.6.3,4.6.1-4.6.3,5.3,6.6.1,8.3.1,8.3.2,10.4,10.5.1)

References
2. L. Wasserman - *All of statistics*

Texts 1 and 2 and reference 2 are available online.
Formal Language & Automata Theory Lab

Implementation of following concept of Theory of computation using C-program:

1. DFAs for some regular languages
2. e-NFA to DFA conversion
3. NFA to DFA conversion
4. Program for DFA minimization
5. PDAs for some Context free languages
6. CYK parsing algorithm for some specific Context free grammars
7. Turing machine for some Recursively Languages
PRACTICE LIST OF EXPERIMENTS

1. (a) Identification of different components of a PC.
 (b) Assembling & disassembling of a PC.

2. Study of different troubleshooting of a dot matrix printer using LX 1050+ Printer Trainer Module.

3. Study of the functions of SMPS using SMPS Trainer Kit.
 (a) Study of SMPS with Single Output under Line Regulation.
 (b) Study of SMPS with Multi Output under Line Regulation.
 (c) Study of SMPS with Single Output under Load Regulation.

4. Study of different troubleshooting of CPU using CPU Trainer Module.

5. Familiarization of different types of byte addressing instruction using 8085 simulator.

7. Design of digital circuits (H/A, F/A, Decoder & Encoder) in VHDL using Active VHDL.

8. Design of digital circuits (MUX, DEMUX & ALU) in VHDL using Active VHDL.

9. Write a C/C++ program to perform signed bit multiplication using Booth’s algorithm.

10. Write a C/C++ program for IEEE-754 floating point representation and perform Addition/Subtraction.