<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name</th>
<th>Hours/ Week L/T</th>
<th>Credit Theory</th>
<th>University Marks</th>
<th>Internal Evaluation</th>
<th>Hours/ Week L/T</th>
<th>Credit Practical</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS</td>
<td>Applied Mathematics-I</td>
<td>3-1</td>
<td>4</td>
<td>100</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BS</td>
<td>Applied Chemistry/Applied Physics</td>
<td>3-0</td>
<td>3</td>
<td>100</td>
<td>50</td>
<td>2</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>ES</td>
<td>Basics of Mechanical Engineering / Basics of Civil Engineering</td>
<td>3-0</td>
<td>3</td>
<td>100</td>
<td>50</td>
<td>2</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>MC & GS</td>
<td>Environmental Studies & Health Care Engineering/ Professional Ethics</td>
<td>3-0</td>
<td>3</td>
<td>100</td>
<td>50</td>
<td>2</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>HS</td>
<td>English Communication Skill</td>
<td>3-0</td>
<td>3</td>
<td>100</td>
<td>50</td>
<td>2</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>ES</td>
<td>Computer Lab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>ES</td>
<td>Engineering Workshop/ Engineering Graphics lab.</td>
<td>2-0</td>
<td>1</td>
<td>-</td>
<td>50</td>
<td>4</td>
<td>2</td>
<td>100</td>
</tr>
</tbody>
</table>

Total \ 18 \ 17 \ 500 \ 300 \ 14 \ 7 \ 400

Total Marks: 1200

Total Credits: 25
APPLIED MATHEMATICS-I
1st Semester

Module-I
(13 Hours)

Calculus:
Asymptote, Curvature, Partial differentiation, Taylor’s theorem for function of two variables, Maxima and Minima for function of two variables.

Module II
(12 Hours)

Differential Equation-1
Differential Equation: First order differential equations, Separable Equation, Exact differential equation,
Linear differential equation, Bernoulli’s equation and application to Electrical circuits.

Differential Equation-II
Linear differential equation of second and higher order, Homogeneous equation with constant co-efficient, Euler-Cauchy equations, Solution by undetermined co-efficient, Solutions by variation of parameters, Modeling of electric circuits

Module-III
(10 Hours)

Series solution of differential equations, Power series method, Legendre equation and Legendre polynomials,
Linear algebra, Matrices, Vectors, Determinants, System of linear equations,

Module-IV
(10 Hours)

Eigen values and eigen vectors, Symmetric and skew-symmetric matrices, Orthogonal matrices,
Complex matrices, Hermitian and skew-Hermitian matrices, Unitary matrices and similarity of matrices.

TextBooks:
1. Differential Calculus by Santi Narayan and Mittal, Chapters 14, 15 Publication
3. Higher Engineering Mathematics by B.V.Raman, Chapter 4.1,4.2, McGraw Hills Education

References:
1. English Mathematics by paland s Bhunia, Oxford Publication
3. Advance Engineering Mathematics by P.V.O’NEIL, CENGAGE
APPLIED PHYSICS

Module-I (07 Classes)

Classical Dynamics

Oscillation & Waves

Simple Harmonic Oscillation, damped harmonic oscillation, Forced oscillator, resonance, coupled oscillation, concept of wave and wave equation.

OPTICS

Concept of interference, two source interface pattern, Bi-prism, Michelson Interferometer & measurement of wavelength.

Module-II (07 Classes)

Solid State Physics

Crystalline and amorphous solid, unit cell, Miller Indices, Reciprocal lattice, Bragg's law, Brillouin's zone, concept of fermions, Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein distribution function (only statement and formula), Concept of Fermions and Bosons. Classification of materials: metals, semiconductor and insulator in terms of band theory

LASER and Fibre Optics:

principle and application -stimulated emission, population inversion, Lasing material (solid and gas), He-Ne laser, Rubi- LASER, Application of LASER (Engineering Application). Principle of optical fibre and its application to communication.

Module-III (08 Classes)

Electromagnetism- Student will be familiarized with some basic used in vector calculus prior to development of Maxwell's electromagnetic wave equations. No proof of theorems and laws included in this unit expected- statement and interpretation should sufficient.

a) Vector calculus: gradient of scalar field, divergence, curl of vector field (Only Physical significance) Gauss divergence theorem, Stoke's theorem, Green's theorem (Only Statements)

b) Gauss's law of electrostatics in free space and in a medium(Only statements)electric displacement(D), magnetic Induction(B).Amperes circuital law (Only statements), displacement current, Faraday's law of electromagnetic induction(Only statements).

Module-IV (08 Classes)

Quantum Physics: Elementary concepts of quantum physics formulation to deal with physical systems.

a) Need for Quantum physics-Historical overviews, Partide aspects of radiation-Black body radiation, photoelectric effect, Compton scattering, pair production.(No derivations), Wave aspect of particles- matter wave, de Broglie Hypothesis, Heisenberg Uncertainty principles- Statement, Interpretation and example
b) Basic features of Quantum mechanics- Transition from deterministic to probabilistic, States of system- Wave function, probability density, superposition principle, observables and operators, expectation values. Schrodinger equation-Time dependent and time independent, wave packets.

Text Books:

2. Engineering Physics by D.K Bhattacharya and Poonam Tandon, Oxford University Press
3. Engineering Physics by D.R. Joshi, McGraw Hill

Reference Book:

1. Quantum Mechanics by Powel & Craseman.
2. Optics- A. K. Ghatak
3. Electricity & Magnetism : E.M. Purecell
4. Introduction to Electrodynamics- David J. Griffiths, PHI Publication
8. An Introduction to Machanics by D.Klippner & R. Kolenkow, TMH
APPLIED PHYSICS LABORATORY

A student is expected to perform ten experiments from the list given below.

1. Determination of Young's modulus by Searle's method.
2. Determination of Rigidity modulus by static method.
3. Determination of surface tension by capillary rise method.
4. Determination of acceleration due to gravity by Bar / Kater's pendulum.
5. Determination of unknown resistance using meter bridge.
6. Determination of wave length of light by Newton's ring apparatus.
7. Determination of grating element of a diffraction grating.
8. Plotting of characteristic curve of a PN junction diode.
9. Plotting of characteristic curves of BJT.
10. Verification of laws of vibration of string using sonometer.
15. Michelson Interferometer.
16. Determination of reduction factor of the given tangent galvanometer and horizontal component of earth's magnetic field by using tangent galvanometer.
APPLIED CHEMISTRY

Course Objectives:

(1) To understand the basics of molecular interactions.
(2) Introductory idea about organometallics and their catalytic applications.
(3) Basics of fuels an corrosion chemistry.

Module I:

Quantum Chemistry and Spectroscopy: Basic concepts and postulates of quantum mechanics. Introduction to Schrodinger Wave Equation. Particle in a box: Energy levels, quantum members and selection rule.

Spectroscopy: Lambert Beer’s Law, Principles and applications of UV-Visible Molecular Absorption Spectroscopy; Chromophores, applications to colorimetry. Effect of conjugation on chromophores, Absorption by aromatic systems, Introductory idea on Rotational and Vibrational Spectroscopy-Principles and application to diatomic molecules. [7 Classes]

The phase rule: Statement of Gibb’s phase rule and explanation of the terms involved, Phase diagram of one component system – water and sulfur system, Condensed phase rule, Phase diagram of two component system – Eutectic Bi-Cd system. [3 Classes]

Module II:

Organometallics: Introduction to organometallics, EAN rule; classification, nomenclature and characteristics of organometallic compounds. Applications of organometallic compounds and catalyst in alkene isomerization hydrogenation and hydroformylation (detail mechanisms are to be excluded). [10 Classes]

Module III:

Module-IV

Corrosion: Electrochemical theory of corrosion, galvanic series, Types of corrosion; Differential metal corrosion, Differential aeration corrosion (Pitting and water line corrosion), Stress corrosion (caustic embrittlement in boilers), Factors affecting, Metal coatings – Galvanizing and Timing, Corrosion inhibitors, cathodic protection.

Text Books:

4. Physical Chemistry by Gordon M. Barrow, McGraw-Hill

Reference Books:
4. Molecular Spectroscopy, Ira N. Levine, John Wiley and Sons

APPLIED CHEMISTRY LAB. (0-0-2)
B.Tech. (for all branches):
1. Determination of amount of sodium hydroxide and sodium carbonate in a mixture.
2. Determination of total hardness of water by EDTA method.
3. Estimation of calcium in calcium in limestone.
4. Determination of percentage of available chlorine in a sample of bleaching powder.
5. Preparation of Phenolphthalein.
6. Acid-Base Titration by Potentiometry.
7. Preparation of buffer solution and determination of pH of a buffer solution.
8. Standardization of KMnO₄ using sodium oxalate. Determination of ferrous iron in Mohr’s salt by potassium permanganate.
10. Determination of rate constant of acid catalyzed hydrolysis reaction.
11. Determination of concentration of a coloured substance by spectrophotometer.
12. Determination of dissolved oxygen in a sample of water.
14. Determination of Flash point of a given oil by Pensky-Marten’s flash point approach.
15. Determination of Critical Micelle concentration (CMC) of an ionic surfactant (Both cationic and anionic).
BASIC MECHANICAL ENGINEERING

Theory L/T (Hours per week): 3/0, Credit: 3

MODULE-1
Thermodynamics: (9 classes)

MODULE-2: (11 classes)
Application of Thermodynamics:
Air compressors, Steam Power Plant, Refrigerators and Heat pump, I.C. Engines (Brief Description of different components of above mentioned systems and working principles with Schematic diagram only)
Introduction to Fluid Mechanics and Heat transfer:
Fluid properties, Pascal's law, Buoyancy, Bernoulli's theorem, pipe flow, hydraulic turbines and pumps. Different modes of heat transfer, heat exchangers (basics).

MODULE-3 (8 classes)
Production processes
Turning, Casting, Welding and forming (Drawing, Forging, Extrusion) (working principles with Schematic diagram only)
Engineering materials:
Classification of Engineering materials. Mechanical properties of Steel, Aluminum and Plastics.

MODULE-4 (8 classes)
Fasteners and Power transmission devices:
Nut, Bolt, Screw, Rivets, Belt, Rope, Gear drives. Coupling, clutch, brakes. (Basics, applications, advantages and limitations only).
Mechanical Measurements:
Temperature, pressure, velocity, flow, strain, force, torque measurements. (Working principle only).

Text books
1. Basic Mechanical Engineering by Pravin Kumar, Pearson
2. Basic Mechanical Engineering by A R Israni, P K Shah, BS Publications

Reference books
2. Engineering Thermodynamics by P. Chattopadhaya, Oxford University Press
4. Elements of Mechanical Engineering by J K Kittur and G D Gokak, Willey
5. Basic Mechanical Engineering by Basant Agrawal, C M Agrawal, Willey
BASIC MECHANICAL ENGINEERING
PRACTICAL

(HOURS PER WEEK): 2, CREDIT: 1

(Minimum 8 experiments/studies)

1. Determination of equilibrium of coplanar forces.
2. Determination of Moment of Inertia of Flywheel
3. Model study of Fire Tube Boilers
4. Model study of Water Tube Boilers
5. Model study of Two stroke I.C. Engine
6. Model study of Four stroke I.C. Engine
7. Model study of Refrigerator
8. Model study of Automobile Parts
9. Model study of Water Turbines
10. Model study of Water pumps
12. Determination of velocity ratio of belt drive
13. Study of Gears and Gear trains
14. Study of Mechanical fasteners
15. Verification of Bernoulli’s Theorem and its application to Venturimeter.
16. Calibration of Bourdon Tube Pressure gauge and measurement of pressure using manometers
BASICS OF CIVIL ENGINEERING (3-0-1)

MODULE-I (10 classes)

Mechanics: Concurrent forces on a plane – Composition and resolution of forces and equilibrium of concurrent coplanar forces, Method of projections, Methods of moment, Friction. Parallel forces in a plane- Two parallel forces, General case of parallel forces, Center of parallel forces in a plane and center of gravity- centroids of composite plane figure and curves, Distributed parallel forces in a plane. General case of forces in a plane- composition of forces in a plane and equilibrium of forces in a plane.

Module-II (10 classes)

Plane trusses- method of joints and method of sections. Moments of Inertia- Plane figure with respect to an axis in its plane and perpendicular to the plane- parallel axis theorem, Moment of Inertia of material bodies.

Module-III (8 classes)

Building Material and Building Construction: Bricks: Brick as a construction material and its importance, qualities of a good brick, Stone: classification, composition and characteristics, Cement: Classification, tests for cement, uses of cement, types of cement, Concrete: Quality of mixing water, Workability, vibration of concrete, concrete mix design, Grade and strength of Concrete. Building Components and their basic requirements, Foundation: Types of foundation, spread foundations, pile foundations, Mortar, Stone masonry, brick masonry, roof, floors, building services: air conditioning, fire protection, ventilation.

Module-IV (8 classes)

Surveying: Linear measurement and chain survey: Use of chains and tapes for measurement of correct length of lines, direct and indirect ranging, Compass surveying: Use of prismatic compass, bearing of a line. Local attraction, Introduction to modern surveying instruments EDM and Total Station.

Transport, Traffic and Urban Engineering: Introduction to planning and design aspects of transportation engineering, different modes of transport, highway engineering, rail engineering, airport engineering, traffic engineering, urban engineering

TEXT BOOKS

2. Basic Civil Engineering, S. Gopi, Pearson
4. Surveying and Levelling by R. Subramanian, Oxford University Press

REFERENCE BOOKS

4. Surveying Vol-1 by R Agor, Khanna Publishers
5. Basic Civil Engineering, M.S. Palanichamy, McGraw Hill
BASICS OF CIVIL ENGINEERING LAB

1. Polygon Law of Coplanar Forces
2. Support Reactions of a beam
3. Experiment on trusses to calculate the force in the member of a simple truss
4. Friction experiment on inclined plane for determining coefficient of friction
5. Moment of inertia of fly wheel
6. Shape and size test of brick
7. Compressive strength of brick
8. Testing of chain and measurement of correct length of the line
9. Bearing of a line
10. Study of Total Station
ENVIRONMENTAL STUDIES AND HEALTH CARE ENGINEERING (3-0-0)

Objective: This course introduces the environmental consequences of Industries on the human health and methods for minimizing their impact through technology and legal system to the undergraduate engineering students.

Module-I [8 Periods]

Module-II [8 Periods]
Causes, effects and control of air, noise and water pollution, treatment of surface water and waste water (pre-, primary and secondary). DO, BOD and COD of waste water treatment process. Sources, properties and management of solid wastes and hazardous wastes. [6 Periods]

Module-III [6 Periods]
Occupational health and safety act and procedure. Hazard control measures in industries like steel, petroleum and pharmaceutical. First aid treatments.

Module-IV [8 Periods]
Environment and Human health:-
Occupational health – nutrition, control of communicable diseases, environmental sanitation, mental health. Prevention of occupational diseases through medical measures, engineering measures and legislation. Role of information technology in human health, causes, prevention and control of diseases like hepatitis, typhoid and malaria.

Text Book:
1. Environmental Studies by Dash & Kumar, India Tech Publication, New Delhi
2. Environmental Studies by R. Rajagopalan Oxford University Press
3. Environmental Science and Engineering, 2E, by Aloka Debi, University Press
4. Environmental Engineering and Safety by Mohapatra, Seven Seas Publication, Cuttack

Reference:
1. Essentials of Community Health Nursing. By K. Park, M/s. Banarsidas Bhanot, Jabalpur
2. Environmental Studies by Dr. S. K. Dhameja, Kataria and Sons, New Delhi
4. Environmental Studies by Bharucha, University Press, Hyderabad.
PROFESSIONAL ETHICS

MODULE-I

Introduction to Ethics: 1.1 Basic terms- Moral, Ethics, Ethical dilemma, Emotional intelligence 1.2 Moral development theories of Kohlberg and Piaget 1.3 View on ethics by Aristotle 1.4 Governing factors of an individual's value system 1.5 Personal and professional ethics

MODULE-II

Profession and Professionalism: 2.1 Clarification of the concepts: Profession, Professional, Professionalism, Professional accountability, Professional risks, Profession and Craftsmanship, Conflict of interest 2.2 Distinguishing features of a professional 2.3 Role and responsibilities of professionals 2.4 Professionals' duties towards the organization and vice-a-versa 3 Ethical Theories: 3.1 Various ethical theories and their application- Consequentialism, Deontology, Virtue theory, Rights Theory, Casuist theory 3.2 Ethical terms: Moral absolutism, Moral Relativism, Moral Pluralism etc. 3.3 Resolving Ethical Dilemma

MODULE-III

Ethics in Engineering: 4.1 Purpose and concept of Engineering Ethics 4.2 Engineering as social experimentation 4.3 Types of inquiry 4.4 Issues in engineering ethics 5 Engineers' Responsibility and Safety: 5.1 Safety, Risk, Underestimating the risk, Over estimating the risk, Risk-benefit analysis 5.2 Causes of an accident and identification of the preventive measures to be taken 5.3 Case Studies

MODULE-IV

Global Ethical Issues: 6.1 Different ethical issues in business, environment, IT, Bioethics, Intellectual Property Rights (IPR), Research, Media, CSR etc. 7 Ethical Codes: 7.1 Meaning and the significance of ethical codes 7.2 The limitations of ethical codes.

Text BOOKS FOR REFERENCE:

Reference:

ENGLISH COMMUNICATION SKILL

Objectives:
• To develop the communication skills and soft skills of the students
• To enhance the ability of the students to participate in group discussions and personal interviews

<table>
<thead>
<tr>
<th>Module</th>
<th>Contents</th>
<th>Class Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The elements of communication (8 hours)
1.1 the importance of communication through English at the present time
1.2 the process of communication and factors that influence communication: sender, receiver, channel, code, topic, message, context, feedback, 'noise', filters and barriers
1.3 the importance of audience and purpose
1.4 the information gap principle: given and new information; information overload
1.5 verbal and non-verbal communication: body language
1.6 comparing general communication and business communication</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>The sounds of English (12 hours)
2.1 vowels, diphthongs, consonants, consonant clusters
2.2 the International Phonetic Alphabet (IPA); phonemic transcription
2.3 problem sounds
2.4 syllable division and word stress
2.5 sentence rhythm and weak forms
2.6 contrastive stress in sentences to highlight different words
2.7 intonation: falling, rising and falling-rising tunes
2.8 varieties of Spoken English: Standard Indian, American and British
(Note: This unit should be taught in a simple, non-technical manner, avoiding technical terms as far as possible.)</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Introduction to Managerial Communication (12 hours)
1.1. Communication challenges in today’s work place: Advances in technology; Culturally diverse workforce; Team-based organizational Settings.
1.2 Effective Business Presentations: Importance in managerial communication; Planning, Preparing, Organizing, Rehearsing, and Delivering Oral presentations, Handling Questions; Power Point Presentation
Introduction to Managerial writing</td>
<td>12</td>
</tr>
</tbody>
</table>
2.2. Writing CVs.
2.3. Memos, notices, circulars, emails.
2.4 Business reports and proposals.

<table>
<thead>
<tr>
<th>4</th>
<th>Soft Skills (8 hours)</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1. Communication skills and Soft Skills.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2. Mastering the art of giving interviews, Types of interviews, Planning and Preparing for a Job Interview; Frequently Asked Questions in a Job Interview; Stages of an Interview; Important Non-verbal Aspects; Strategies for success in Job Interviews.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3. Business and social etiquettes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case analysis and self study assignments are compulsory</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recommended Books:

1. Communication skill by Sanjay Kumar & PuspLata, Oxford University Press
2. An Introduction to Professional English and Soft Skills by B.K.Das et al, Cambridge University
3. A Textbook of English Phonetics for Indian Students by T.Balasubramanian, MACMILLAN

Reference Books:

1. Technical Communication, Principle and Practice by Meenakshi Raman & Sangeeta Sharma, Oxford University Press
2. Basic Communication Skills by P.KiranmaiDutt, Geetha Rajeevan, Cambridge University Press Books
5. Communication for Management, Urmila Rai and S M Rai, HPH
6. Business and Managerial Communication, Sengupta, PHI
9. Soft Skills K Alex, S Chand
ENGLISH COMMUNICATION SKILLS (LAB)

Lab sessions will be devoted to practice activities based on all three modules of theory.

a. phonemic transcription 5 hours
 Students will be trained to find out the correct pronunciation of words with the help of a dictionary, to enable them to monitor and correct their own pronunciation.
 i. Transcription of words and short sentences in normal English orthography (writing) into their IPA equivalents;
 ii. Transcription of words presented orally;
 iii. Conversion of words presented through IPA symbols into normal orthography
 iv. syllable division and stress marking (in words presented in IPA form)

b. Listening 10 hours
 i. Listening with a focus on pronunciation (ear-training): segmental sounds, stress, weak forms, intonation
 Students should be exposed, if possible, to the following varieties of English during listening practice: Standard Indian, British and American.

c. Speaking 15 hours
 i. Pronunciation practice (for accent neutralization), particularly of problem sounds, in isolated words as well as sentences
 ii. Practising word stress, rhythm in sentences, weak forms, intonation
 iii. Reading aloud of dialogues, poems, excerpts from plays, speeches etc. for practice in pronunciation

d. Managerial Writing 6 hours
Module – I
C program - header files, C pre-processor, standard library functions, etc., identifiers, basic data types and sizes, constants, variables, arithmetic, relational and logical operators, increment and decrement operators, conditional operator, bit-wise operators, assignment operators, expressions, type conversions, conditional expressions, Input-output statements, if and switch statements, loops: while, do-while and for statements, break, continue, etc.

a) Write a C program to find the sum of individual digits of a positive integer.
b) Write a C program to find Fibonacci sequence.
c) Write a C program to generate all the prime numbers between 1 and n.
d) Write a C program to find the roots of a quadratic equation.
e) Write a C program to find both the largest and smallest number in a list of integers.

Module – II
Designing structured programs: - Functions, parameter passing, storage classes- extern, auto, register, static, scope rules, user defined functions, recursive functions. Arrays - concepts, declaration, definition, accessing elements, and functions, Pointers- concepts, initialization of pointer variables, pointers and function arguments, address arithmetic, Character pointers and functions, pointers to pointers, Dynamic memory management.

a) Write C programs that use both recursive and non-recursive functions
 i) To find the factorial of a given integer.
 ii) To find the GCD (Greatest Common Divisor) of two given integers.
 iii) To solve Towers of Hanoi problem.
b) Write a C program that uses functions to perform the following:
 i) Addition of Two Matrices
 ii) Multiplication of Two Matrices
 c) Write a C program that uses functions to perform the following operations:
 i) To insert a sub-string in to given main string from a given position.
 ii) To delete n Characters from a given position in a given string.
 d) Write a C program to determine if the given string is a palindrome or not
 e) Write a C program to construct a pyramid of numbers.

Module – III
Derived types- structures- declaration, definition and initialization of structures, accessing structures, nested structures, arrays of structures, structures and functions, pointers to structures, union.

a) Write a program to display Name, Roll Number, Marks of different subjects etc. of n number of students.
b) Write a C program to count the lines, words and characters in a given text.
c) Write a C program that uses structure to perform the following operations:
 i) Reading a complex number
 ii) Writing a complex number
 iii) Addition of two complex numbers
 iv) Multiplication of two complex numbers

(Note: represent complex number using a structure.)
ENGINEERING GRAPHICS

Introduction Drawing Instruments and their uses, BIS conventions, Lettering, Dimensioning line Conventions

AUTO CAD, layout of the software, standard tool bar/menus and description of most commonly used toolbars, navigational tools. Co-ordinate system and reference planes. Definitions of HP, VP, RPP &LPP. Creation of 2D/3D environment. Selection of drawing size and scale. Commands and creation of Lines, Co-ordinate points, axes, poly-line, square, rectangle, polygons, splines, circles, ellipse, text, move, copy, off-set, mirror, rotate, trim, extend, break, chamfer, fillet, curves, constraints.

Orthographic Projections
Introduction, Definitions - Planes of projection, reference line and conventions employed, Projections of points in all the four quadrants, Projections of straight lines (located in First quadrant/first angle only), True and apparent lengths, True and apparent inclinations to reference planes

Orthographic Projections of Plane Surfaces (First Angle Projection Only)
Introduction, Definitions–projections of plane surfaces–triangle, square, rectangle, rhombus, pentagon, hexagon and circle, planes in different positions by change of position method only

Projections of Solids (First Angle Projection Only)
Introduction, Definitions – Projections of right regular tetrahedron, hexahedron (cube), prisms, pyramids, cylinders and cones in different positions.

Sections and Development of Lateral Surfaces of Solids
Introduction, Section planes, Sections, Section views, Sectional views, Apparent shapes and True shapes of Sections of right regular prisms, pyramids, cylinders and cones resting with base on HP.

Isometric Projection (Using Isometric Scale Only)
Introduction, Isometric scale, Isometric projection of simple plane figures, Isometric projection of tetrahedron, hexahedron (cube), right regular prisms, pyramids, cylinders, cones, spheres, cut spheres.

Text Books
3. Engineering Drawing by N.S. Parthasarathy and Vela Murali, Oxford University Press

Reference Books
3. Computer Aided Engineering drawing, Prof. M. H. Annaiah, New Age International Publisher, New Delhi
ENGINEERING WORKSHOP

Fitting Practice:
Use of hand tools in fitting, preparing a male and female joint of M.S. or making a paper weight of M.S.

Welding Practice:
Gas welding & Electric Arc welding Practice.
A joint such as a Lap joint, a T-joint or a Butt joint is to be prepared or to make furniture.

Machining:
 (i) Stepped cylindrical Turning of a job and Thread-cutting in lathe.
 (ii) Shaping (iii) Milling

Reference
2. Workshop Technology by WAJ Chapman, Viva Books
3. Workshop Manual by Kannaiah/ Narayana, Scitech